Answer Key for Exam #1

1. The vectors
$$\begin{pmatrix} 3\\0\\4\\1\\1\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\1\\1\\4\\4\\1 \end{pmatrix}$ each have have length 6:

$$\sqrt{3^2 + 0^2 + 4^2 + 1^2 + 1^2 + 3^2} = 6 = \sqrt{1^2 + 1^2 + 1^2 + 4^2 + 4^2 + 1^2}.$$

Their dot product is 3 + 0 + 4 + 4 + 4 + 3 = 18, so the angle θ between them satisfies $\cos \theta = \frac{18}{6 \cdot 6} = \frac{1}{2}$. Therefore $\theta = \frac{\pi}{3}$, or 60°.

2. We use elimination on an augmented matrix. First two steps: subtract twice the first row from the second, and three times the first row from the third. Next two steps: multiply the second row by -1, and then add five times the second row to the third. This gives

$$\begin{pmatrix} 1 & 2 & 3 & & 10 \\ 2 & 3 & 1 & & 7 \\ 3 & 1 & 2 & & 19 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & & 10 \\ 0 & -1 & -5 & & -13 \\ 0 & -5 & -7 & & -11 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & & 10 \\ 0 & 1 & 5 & & 13 \\ 0 & 0 & 18 & & 54 \end{pmatrix}.$$

The third equation gives $x_3 = 3$. Then the second equation becomes $x_2 + 15 = 13$, so $x_2 = -2$. Finally the first equation becomes $x_1 - 4 + 9 = 10$, so $x_1 = 5$.

3. The inverse of $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ is

$$\frac{1}{2 \cdot 4 - 3 \cdot 3} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3 & -2 \end{pmatrix},$$

and the inverse of $\begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix}$ is

$$\frac{1}{3 \cdot 5 - 4 \cdot 4} \begin{pmatrix} 5 & -4 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} -5 & 4 \\ 4 & -3 \end{pmatrix},$$

so you might guess that $A^{-1} = \begin{pmatrix} -4 & 0 & 0 & 3 \\ 0 & -5 & 4 & 0 \\ 0 & 4 & -3 & 0 \\ 3 & 0 & 0 & -2 \end{pmatrix}$, and once guessed this is easy to check. Alternatively

we can use row operations to reduce $[A \ I]$ to $[I \ A^{-1}]$. I'll try to avoid fractions: subtract the first row from the fourth, and the second row from the third to get

$$\begin{pmatrix} 2 & 0 & 0 & 3 & & & 1 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & & & 0 & 1 & 0 & 0 \\ 0 & 4 & 5 & 0 & & & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 4 & & & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 0 & 0 & 3 & & & 1 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & & & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & & & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 & & & -1 & 0 & 0 & 1 \end{pmatrix}.$$

Next, subtract twice the fourth row from the first, and three times the third row from the second:

$$\begin{pmatrix} 2 & 0 & 0 & 3 & & 1 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 & & -1 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & & 3 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & & 0 & 4 & -3 & 0 \\ 0 & 1 & 1 & 0 & & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 & & -1 & 0 & 0 & 1 \end{pmatrix}.$$

Now subtract the second row from the third and the first row from the fourth:

$$\begin{pmatrix} 0 & 0 & 0 & 1 & & & 3 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & & & 0 & 4 & -3 & 0 \\ 0 & 1 & 1 & 0 & & & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 & & -1 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 & 1 & & 3 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & & & 0 & 4 & -3 & 0 \\ 0 & 1 & 0 & 0 & & & 0 & -5 & 4 & 0 \\ 1 & 0 & 0 & 0 & & & -4 & 0 & 0 & 3 \end{pmatrix}.$$

If we now switch the first and fourth rows, and also the second and third rows, we get A^{-1} as before.

4(a) Step 1: subtract the first row of A from all the others. Step 2: subtract twice the second row from the third, and three times the second row from the fourth. Step 3: subtract three times the third row from the fourth. This gives

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 5 & 9 \\ 0 & 3 & 9 & 19 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 3 & 10 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} = U.$$

Step 1 puts 1's in the second through fourth rows of column 1 of L; step 2 puts 2 and 3 respectively in the third and fourth rows of column 2; and step 3 puts a 3 in the fourth row and third column of L, so

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{pmatrix}, U = L^T, \text{ and } A = LU = LL^T.$$

4(b) We may now solve $A\vec{x} = \begin{pmatrix} 1 \\ 8 \\ 27 \\ 64 \end{pmatrix}$ in two steps. First we solve $L\vec{y} = \vec{b}$, which in this case is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ 27 \\ 64 \end{pmatrix},$$

and we get $y_1 = 1$; $1 + y_2 = 8$, so $y_2 = 7$; $1 + 14 + y_3 = 27$, so $y_3 = 12$; and $1 + 21 + 36 + y_4 = 64$ so $y_4 = 6$. Finally we solve $U\vec{x} = \vec{y}$, which in this case is

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \\ 12 \\ 6 \end{pmatrix}.$$

Here we have $x_4 = 6$; $x_3 + 18 = 12$ so $x_3 = -6$; $x_2 - 12 + 18 = 7$ so $x_2 = 1$; $x_1 + 1 - 6 + 6 = 1$ so $x_1 = 0$.

4(c) Here we have to reduce $[L \ I]$ to $[I \ L^{-1}]$ by row operations, which is not too hard:

So
$$L^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix}$$
, and $U^{-1} = (L^T)^{-1} = (L^{-1})^T$ so $U^{-1} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

4(d) Since A = LU and L and U are both invertible, we have $A^{-1} = U^{-1}L^{-1}$. Therefore

$$A^{-1} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -6 & 4 & -1 \\ -6 & 14 & -11 & 3 \\ 4 & -11 & 10 & -3 \\ -1 & 3 & -3 & 1 \end{pmatrix}.$$

5. If
$$R = \begin{pmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{pmatrix}$$
 and $P = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos \phi & \sin \phi)$, then

$$RP = \begin{pmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos \phi & \sin \phi)$$

$$= \begin{pmatrix} \cos 2\phi \cos \phi + \sin 2\phi \sin \phi \\ \sin 2\phi \cos \phi - \cos 2\phi \sin \phi \end{pmatrix} (\cos \phi & \sin \phi)$$

$$= \begin{pmatrix} \cos (2\phi - \phi) \\ \sin (2\phi - \phi) \end{pmatrix} (\cos \phi & \sin \phi)$$

$$= \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos \phi & \sin \phi) = P,$$

and also

$$PR = \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos \phi - \sin \phi) \begin{pmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{pmatrix}$$

$$= \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos 2\phi \cos \phi + \sin 2\phi \sin \phi - \sin 2\phi \cos \phi - \cos 2\phi \sin \phi)$$

$$= \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos (2\phi - \phi) - \sin (2\phi - \phi))$$

$$= \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} (\cos \phi - \sin \phi) = P.$$

If P projects a vector onto a line and R reflects it through the same line, then we should expect RP = P, because R is acting on a vector that has already been projected onto the line by P, and R does nothing to such a vector. (Note: this is the explanation for RP, not for PR, because the matrix on the right sees the vector first.) We also expect PR = P, because the projection of a vector onto a line is the same as the projection of its reflection in that line.

Another, less trigonometrically intensive way to do the problem is to recall that P was defined to be $\frac{1}{2}(I+R)$. If we solve this for R we get R=2P-I. Therefore

$$RP = (2P - I)P = 2P^2 - P = 2P - P = P$$
 and $PR = P(2P - I) = 2P^2 - P = 2P - P = P$

since a projection matrix is its own square.

6. If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $AA^T = A^T A$, then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Multiplying this out we get

$$\begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix},$$

which implies that $a^2 + b^2 = a^2 + c^2$, ac + bd = ab + cd and $c^2 + d^2 = b^2 + d^2$. The first and third of these equations tell us that $b^2 = c^2$, so $b = \pm c$. We can rewrite the second equation as

$$0 = ac + bd - ab - cd$$
$$= a(c - b) + d(b - c)$$
$$= (a - d)(c - b),$$

so either b = c or a = d. There are then two possibilities to satisfy all the equations: either b = c; or a = d and b = -c. If b = c then A is symmetric, in which case it is obvious that $AA^T = A^TA$ since both sides equal A^2 . If a = d and b = -c then A looks like

$$\begin{pmatrix} a & -c \\ c & a \end{pmatrix}$$

This would be a rotation matrix if $a^2 + c^2 = 1$, but $a^2 + c^2$ won't be 1 in general. However, it will equal some nonnegative number, which we might as well call r^2 for some nonnegative r. Then we have

$$\left(\frac{a}{r}\right)^2 + \left(\frac{c}{r}\right)^2 = 1,$$

so $(\frac{a}{r}, \frac{c}{r})$ is a point on the unit circle, and therefore there is an angle θ such that $\frac{a}{r} = \cos \theta$ and $\frac{c}{r} = \sin \theta$. Then

$$\begin{pmatrix} a & -c \\ c & a \end{pmatrix} = r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

where

$$r = \sqrt{a^2 + c^2}$$
, $\cos \theta = \frac{a}{r}$, and $\sin \theta = \frac{c}{r}$.

Therefore A is a multiple of a rotation matrix.

Scores: The median and mean were both 88.

Score	Frequency	Score	Frequency	Score	Frequency
98	1	91	2	85	2
95	2	89	1	83	2
94	1	88	3	78	1
93	2	87	1	76	1
92	2	86	1	75	1