NAME		
	VV_VIVIIVIIIIXX_XIXIIT (10) (5) (5) (5) (5) (10) (15) (10) (5)	TOTAL(100)
February 5 2010	Mathematics 206 Multivariable Calculus Examination #1	Mr. Haines
(15) I. If $a = i + j$	and $\mathbf{b} = \mathbf{i} - 2\mathbf{j}$, compute these:	

(15) I. If
$$\mathbf{a} = \mathbf{i} + \mathbf{j}$$
 and $\mathbf{b} = \mathbf{i} - 2\mathbf{j}$, compute these:

B.
$$\|{\bf b}\| =$$

C.
$$comp_b a =$$

D.
$$proj_ba =$$

(10) IV. $\mathbf{A}(t) = \left(1+t, t^2, \frac{1}{t}\right)$ with $t \ge 1$ is a path in \Re^3 .

A. Calculate A'(t), the derivative of A(t).

B. Give an equation of the tangent line to this path at the point where t = 1.

(5) V. Identify in words the surface whose equation is $x^2 - y^2 - z^2 - 1 = 0$

(5) VIII. The plane P has coordinate equation $2x + 3y + z = 5$.
Give an equation for any line lying in P:

- (10) IX. Give examples of:
 - A. Two unit vectors in \Re^3 that are perpendicular.

B. Equations of two distinct parallel planes.

 $(15) X. If <math>f(x,y) = x \sin y$

A.
$$\frac{\partial f}{\partial x}(x, y) =$$

B.
$$\frac{\partial f}{\partial y}(x, y) =$$

C.
$$\frac{\partial^2 f}{\partial y \partial x}(x, y) =$$

D.
$$\frac{\partial^2 f}{\partial x \partial y}(x, y) =$$

(10) XI. For the quadratic form

$$p(x, y, z) = -x^2 - 2y^2 - 5z^2 - 2xz,$$

A. Give a symmetric matrix S that is the matrix of this quadratic form.

B. By taking determinants and using Sylvester's Theorem, determine if p is positive definite, negative definite, indefinite, or none of these.

(5) XII. A student says that any three points in \mathbb{R}^3 determine a plane. She wants to find the equation of the plane that contains the points (1, 1, 3), (1, 0, 4), and (1, -1, 5). She knows she needs to find a normal to the plane, but has trouble computing it. Why?