I]	[I]	II	IVV	′V	IVII	VIII]	IX	X	_TOTAL	
(10)	(10)	(16)	(16)	(6)	(10)	(10)	(8)	(8)	(6)		
Februa	ary 5	Mathematics 206a								Mr. Haines	
2009 Multivariable Calculus											
				Exa	mination	#1					

(10) I. If $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ with rule $\mathbf{f}(x, y) = \left(e^{xy}, \sqrt{4-y}, \sqrt{y-x^2}\right)$,

sketch a graph of the domain of f.

(10) II. Give an equation of the straight line passing through the points (1, 2, 3) and (3, 6, 7).

(16) III. If
$$f(x, y) = \ln(x^2 + y^2)$$

A.
$$\frac{\partial f}{\partial x}(x, y) =$$

B.
$$\frac{\partial f}{\partial y}(x, y) =$$

C.
$$\frac{\partial^2 f}{\partial y^2}(x, y) =$$

D.
$$\frac{\partial^2 f}{\partial x^2}(x, y) =$$

(16) IV. If $\mathbf{a} = 3\mathbf{i} - \mathbf{j}$ and $\mathbf{b} = \mathbf{i} - 3\mathbf{j}$, compute these:

A. $\mathbf{a} \cdot \mathbf{b} =$

 $\mathbf{B.} ~ \| \mathbf{b} \| ~ = ~$

C. $comp_a b =$

D. $proj_ab =$

(6) V. Explain why $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$ does not exist.

(10) VI. For the quadratic form $p(x, y, z) = x^2 + 5y^2 - 10z^2 + 6xy - 4xz + 2yz$,

A. give a symmetric matrix S that is the matrix of this quadratic form.

B. By taking determinants and using Sylvester's Theorem, determine if p is positive definite, negative definite, indefinite, or none of these.

(10) VII. If $f: \mathbb{R}^2 \to \mathbb{R}$ with rule $f(x, y) = \frac{y^2}{x^2}$, sketch the level curves of f for c = 0, 1, 4, and 16.

(8) VIII. Give an equation of the plane through the point (1, 2, 3) with normal vector parallel to the line with equation (x, y, z) = (2t + 1, 5t - 7, -t + 8).

- (8) IX. The points (1, 1), (2, 4), and (7, 5) are three vertices of a parallelogram in \Re^2 .
 - A. What is the fourth vertex of that parallelogram?

B. What is the area of that parallelogram?

(6) X. If $\mathbf{A}(t) = \left(\cos t, t^2, \frac{1}{t}\right)$ with $t \ge \pi/2$ is a path in \Re^3 , calculate $\mathbf{A}'(t)$, which denotes the derivative of $\mathbf{A}(t)$.