INTEGRATION TIPS

- Substitution: usually let \(w \) = an inside function, especially if \(w' \) is also present in the integrand

- Parts: \(\int u \, dv = uv - \int v \, du \) or \(\int uv' \, dx = uv - \int u'v \, dx \)

How to choose which part is \(u \)? Let \(u \) be the part that is higher up in the LIATE mnemonic below. (The mnemonics LIATE and LIPET will work equally well if you have learned one of those instead; in the latter \(A \) is replaced by \(P \), which stands for "polynomial".)

Logarithms (such as \(\ln x \))
Inverse trig (such as \(\arctan x, \arcsin x \))
Algebraic (such as \(x, x^2, x^3 + 4 \))
Trig (such as \(\sin x, \cos 2x \))
Exponentials (such as \(e^x, e^{3x} \))

- Rational Functions (one polynomial divided by another): if the degree of the numerator is greater than or equal to the degree of the numerator, do long division then integrate the result.

Partial Fractions: here's an illustrative example of the setup.

\[\frac{3x^2 + 11}{(x + 1)(x - 3)(x^2 + 5)} = \frac{A}{x + 1} + \frac{B}{x - 3} + \frac{C}{x^2 + 5} \]

Each linear term in the denominator on the left gets a constant above it on the right; the squared linear factor \((x - 3)\) on the left appears twice on the right, once to the second power. Each irreducible quadratic term on the left gets a linear term \((Dx + E\) here) above it on the right.

1. Find the following.

(a) \(\int \frac{e^{x^2}}{x} \, dx = \int \frac{e^w}{w} \, dw = 2e^w \bigg|_{x=1}^{x=4} = 2e^4 - 2e^1 = 2(e^4 - e^1) \)

(b) \(\int x^3 \ln x \, dx = \frac{x^4}{4} \int \ln x \, dx = \frac{x^4}{4} \left[x \ln x - \frac{x^2}{2} \right] = \frac{x^4}{4} \left(x \ln x - \frac{x^2}{2} \right) + C \)

(c) \(\int \frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} \, dx = \int \left[\frac{2}{x - 3} + \frac{x - 1}{x^2 + 1} \right] \, dx = 2 \ln |x - 3| + \frac{1}{2} \ln |x^2 + 1| + \text{Constant} + D \)

Note! If \(u = x^2 + 1 \), then \(du = 2x \, dx \), so

\[\int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| = \frac{1}{2} \ln |x^2 + 1| \]

[Or use #35 in table.]

Partial Fractions:
\[\frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 1} \]

\[3x^2 + 2x - 13 = A(x^2 + 1) + (Bx + C)(x - 3) \]

Let \(x = 3 \) \(\Rightarrow 20 = A \cdot 10 + (B \cdot 0 + C)(-3) \Rightarrow A = 2 \)

Let \(x = 0 \) \(\Rightarrow -13 = 2 \cdot 1 + (B \cdot 0 + C)(-3) \Rightarrow -13 = -3C \Rightarrow C = 5 \)

Let \(x = 1 \) \(\Rightarrow -8 = 2 \cdot 2 + (B \cdot 1 + C)(-2) \Rightarrow -8 = 4 - 2B - 10 \Rightarrow B = 1 \)
Long division
\[
\begin{align*}
\text{(d)} & \int \frac{4x^3 - 27x^2 + 20x - 17}{x-6} \, dx = \int \left(4x^2 - 3x + 2 - \frac{5}{x-6}\right) \, dx = \\
& = \frac{4x^3}{3} - \frac{2x^2}{2} + 2x - 5 \ln |x-6| + C \\
\end{align*}
\]

Completing the square:
\[
\begin{align*}
\text{(e)} & \int \frac{2x - 12}{x^2 - 12x + 52} \, dx = \int \frac{\frac{\sqrt{4}}{\sqrt{2}}}{x-6} + 16 \, dx = \\
& = \int \frac{du}{u^2 + 16} = \frac{1}{4} \arctan \left(\frac{x-6}{4}\right) + C \\
\text{Sub: } w &= x-6 \\
\text{dw} &= dx \\
\text{#13 m table}
\end{align*}
\]

Substitution table:
\[
\begin{align*}
\text{(f)} & \int 4x^3 \sin(5x^4) \sin(2x^4) \, dx = \int \frac{\sin(5w) \sin(2w)}{2.3} \, dw = \\
& = \left[-\frac{\sin(3x^4)}{2.3} + \frac{\sin(7x^4)}{2.7} \right] + C \\
\text{Sub: } w &= x^4 \\
\text{\Rightarrow } dw &= 4x^3 \, dx \\
\text{#44 m table}
\end{align*}
\]

\[
\begin{align*}
\text{(g)} & \text{the area between } y = x^2 - 8x + 24 \text{ and } y = 3x \\
& \text{intersect when} \\
& x^2 - 8x + 24 = 3x \\
& \Rightarrow x^2 - 11x + 24 = 0 \\
& \Rightarrow (x-3)(x-8) = 0 \\
& \Rightarrow x = 3, 8
\end{align*}
\]

2. If \(f(x) \) is decreasing and concave up, put the following quantities in ascending order.

\[
L_{100}, R_{100}, T_{100}, M_{100}, \int_0^b f(x) \, dx
\]

What can you say with certainty about where \(S_{200} \) would fit into your list above?

\[
R_{100} < M_{100} < \int_0^b f(x) \, dx < T_{100} < L_{100}
\]

3. Find the best possible left, right, midpoint, trapezoidal, and Simpson's approximations to \(\int_4^{12} f(x) \, dx \) given the data in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(4)</th>
<th>(6)</th>
<th>(8)</th>
<th>(10)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
L_4 = (15+11+8+4) \cdot 2 = 76 \\
R_4 = (11+8+4+3) \cdot 2 = 52 \\
T_4 = \frac{1}{2}(L_4+R_4) = 64 \\
M_2 = (11 + 4) \cdot 4 = 60 \\
S_4 = \frac{T_4 + 2M_2}{3} = \frac{64 + 2 \cdot 60}{3} = 62 \frac{2}{3}
\]

We cannot compute \(M_4 \); it would require the values \(f(5), f(7), f(9), \) and \(f(11) \). So, we compute \(M_2 \) instead (with \(\Delta x = 4 \)).
4. Find bounds for each of the following errors if \(I = \int_2^7 \ln x \, dx \).

(a) \(|I - L_{100}| \leq \frac{k_1(b-a)^2}{2n} = \frac{1}{2} \cdot \frac{5^2}{200} = \frac{1}{16} \)

\(k_1 = \text{max of } |f'(x)| \text{ on } [2,7] = \text{max of } \frac{1}{x} \text{ on } [2,7] = \frac{1}{2} \text{ (at } x=2 \) \)

(b) \(|I - T_{100}| \leq \frac{k_2(b-a)^3}{12n^2} = \frac{1}{4} \cdot \frac{5^3}{12 \cdot 100^2} = \frac{1}{3840} \)

\(k_2 = \text{max of } |f''(x)| \text{ on } [2,7] = \text{max of } \frac{1}{x^2} \text{ on } [2,7] = \frac{1}{4} \text{ (at } x=2 \) \)

(c) \(|I - M_{100}| \leq \frac{k_3(b-a)^3}{24n^2} = \frac{1}{4} \cdot \frac{5^3}{24 \cdot 100^2} = \frac{1}{7680} \)

\(k_3 = \text{max of } |f'''(x)| \text{ on } [2,7] = \text{max of } \frac{6}{x^3} \text{ on } [2,7] = \frac{6}{16} = \frac{3}{8} \text{ (at } x=2 \) \)

(d) \(|I - S_{100}| \leq \frac{k_4(b-a)^5}{180n^4} = \frac{3}{8} \cdot \frac{5^5}{180 \cdot 100^4} = \frac{1}{1536000} \)

\(k_4 = \text{max of } |f^{(4)}(x)| \text{ on } [2,7] = \text{max of } \frac{6!}{x^5} \text{ on } [2,7] = \frac{6!}{16} = \frac{3}{8} \text{ (at } x=2 \) \)

5. Use Euler's method with three steps on the differential equation \(\frac{dy}{dx} = y - x \) to estimate \(y(2.5) \) if \(y(1) = 0 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\frac{dy}{dx} \cdot \Delta x = \Delta y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1.12 = -1</td>
</tr>
<tr>
<td>1.5</td>
<td>-1</td>
<td>-2 = -2</td>
</tr>
<tr>
<td>2</td>
<td>-1.5</td>
<td>-1 = -1</td>
</tr>
<tr>
<td>2.5</td>
<td>-3</td>
<td>-0.12 = -0.15</td>
</tr>
</tbody>
</table>

\(\text{So, } y(2.5) \approx -1.15 \)

6. Find the arc length of \(y = \sqrt{1 - x^2} \) on the interval \([0, 1] \).

\(y' = \frac{1}{2} (1-x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{1-x^2}} \), so \((y')^2 = \frac{x^2}{1-x^2} \)

\(\text{arc length} = \int_0^1 \sqrt{1 + \frac{x^2}{1-x^2}} \, dx = \int_0^1 \sqrt{\frac{1-x^2 + x^2}{1-x^2}} \, dx \) (common denominator)

\(= \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x \big|_0^1 = \arcsin 1 - \arcsin 0 = \frac{\pi}{2} - 0 = \frac{\pi}{2} \)
7. Consider the region defined by \(y = \sqrt{x}, \ x = 0, \ y = 0, \) and \(x = 9. \) Write an integral equal to the volume generated if this region is rotated about

(a) the \(x- \) axis

\[
\text{vol of slice} \approx \pi r^2 \Delta x = \pi y^2 \Delta x = \pi (\Delta x)^2 \Delta x = \pi x \Delta x
\]

\[
\text{total vol} = \pi \int_0^9 x \, dx
\]

(b) the line \(x = -1 \)

\[
\text{vol of slice} \approx \pi r^2 \Delta y - \pi r^2 \Delta y
\]

\[
\approx \pi 10^2 \Delta y - \pi (1 + x)^2 \Delta y = \pi \left[100 - (1 + y^2)^2 \right] \Delta y
\]

\[
\text{total vol} = \pi \int_0^3 \left[100 - (1 + y^2)^2 \right] \, dy
\]

8. A pyramid has a square base 30 feet to a side and a height of 10 feet. Write integrals equal to

(a) the volume of the pyramid

\[
\text{cross-section similar triangles:} \quad \frac{10}{30} = \frac{10-h}{s} \Rightarrow s = \frac{3}{10} (10-h) \cdot 3
\]

\[
\text{vol of slice} \approx \pi s^2 \Delta h = \pi \left[3 (10-h)^2 \right] dh
\]

\[
\text{total vol} = \int_0^{10} \pi \left[3 (10-h)^2 \right] dh
\]

(b) the work done in pumping all the fluid to a point 5 feet above the pyramid if the pyramid is filled to a height of 8 feet with water

\[
\int_0^8 3 (10-h)^2 \cdot 62.4 \cdot (15-h) \, dh
\]

9. Solve the differential equation \(y' = 3(x^2 + 1)(y^2 + 1) \) if the solution passes through the origin.

\[
\frac{dy}{dx} = 3(x^2+1)(y^2+1)
\]

\[
\int \frac{dy}{y^2+1} = \int 3(x^2+1) \, dx
\]

\[
\arctan y = x^3 + 3x + C
\]

\[
y = \tan(x^3 + 3x + C)
\]

\[
y = 0 \text{ when } x = 0, \quad \text{so}
\]

\[
0 = \tan(c) \quad \Rightarrow \quad c = 0
\]

Thus,

\[
y = \tan(x^3 + 3x)
\]