
AN ALGORITHMIC APPROACH TO THE DWORK FAMILY

ADRIANA SALERNO

Abstract. In his work studying the Zeta functions of families of hypersur-
faces, Dwork came upon a one-parameter family of hypersurfaces (now known
as the Dwork family). These examples were not only useful to Dwork in his
study of his deformation theory for computing Zeta functions of families, but
they have also proven to be extremely useful to physicists working in mirror
symmetry. We have developed a computer algorithm, implemented in Pari-
GP, which computes the Gauss-Manin connection associated to the Dwork
family. A surprising result is that these families are very closely linked to
hypergeometric functions. This phenomenon was carefully studied by Dwork
and Candelas, de la Ossa, and Rodŕıguez-Villegas in a few special cases, then
later proved by Katz, Rojas-Leon and Wan, and Kloosterman, independently.
We verify this latter result by using our algorithm to show that the Picard-
Fuchs equation is in fact related to a hypergeometric differential equation and
to compute its solutions.

1. Introduction

In his work studying the Zeta functions of families of hypersurfaces, Dwork came
upon a one-parameter family of hypersurfaces in Pn−1 (now known as the Dwork
family), defined by:

Xλ : xn
1 + · · ·+ xn

n − nλx1 · · ·xn = 0.

These examples were not only useful to Dwork in his study of his deformation
theory for computing Zeta functions of families, but they have also proven to be
extremely useful to physicists working in mirror symmetry (c.f. [5]).

In particular, Dwork’s work gives a construction of modules isomorphic to the
middle (relative) deRham cohomology, equipped with an integrable connection
which is equivalent to the Gauss-Manin connection. By the work of Katz and
Oda [21], we know that this connection is essentially differentiation of cohomology
classes with respect to the parameter. Differentiating each basis element in the
module gives us a first-order system of differential equations.

In this paper, we follow the direct approach originally used by Dwork and then
Candelas et al. That is, we use Dwork’s original construction of a module over C
and algorithmic methods based on the combinatorics and linear algebra inherent to
this construction. All the computer algorithms have been implemented in Pari-GP
[24] and the GP scripts can be found in the arxiv version of this paper. Our main
algorithm computes the matrix for the Gauss-Manin connection associated with the
Dwork family, by blocks. This is equivalent to computing the Picard-Fuchs equa-
tion for the family. We believe this approach will be useful for the computation of
Zeta functions of other families. In fact, Kloosterman in [23] also uses Dwork’s co-
homology construction to develop a formula that gives the Zeta function associated

1

2 ADRIANA SALERNO

to more general monomial deformations of diagonal hypersurfaces. Kloosterman et.
al. have also studied the zeta function for certain K3-fibered Calabi-Yau threefolds
[13].

Computational methods for studying Zeta functions have been used in many
other special cases, like for nondegenerate hypersurfaces with few monomials [29]
and for some mirror octics [16]. We believe that the algorithm presented here
might be generalizable for a broader class of hypersurfaces, including non-diagonal
hypersurfaces in projective space and specific families of hypersurfaces in toric
varieties. We especially think that in the context of arithmetic mirror symmetry, i.e.
computing Zeta functions of mirror pairs, a computational approach is necessary,
as their behavior is not at all well understood. Currently the author is working
on modifying this algorithm to study the Zeta function of mirror families of K3-
surfaces, beyond the well-understood monomial deformations of the Fermat pencil.

A surprising result is that the Dwork families are very closely linked to hyperge-
ometric functions. This phenomenon was carefully studied by Dwork in the cases
where n = 3, 4 (see for example [9]) and for n = 5 by Candelas, de la Ossa, and
Rodŕıguez-Villegas ([7], [8]). Dwork, Candelas et. al. noticed, in the examples they
studied, that the differential equations obtained through this method are hyperge-
ometric differential equations. In recent years, Dwork’s ideas have been generalized
to compute Zeta functions using p-adic and ℓ-adic cohomology. In studying the
Zeta function using ℓ-adic cohomology, Katz proved that there was a link between
more general monomial deformations of Fermat hypersurfaces (of which the Dwork
family is an example) and hypergeometric sheaves [20]. Rojas-Leon and Wan, inde-
pendently from Katz, implemented the same approach to compute Zeta-functions
[26].

The second algorithm in this paper uses a block of the connection matrix to
compute the parameters of the associated hypergeometric differential equation (and
in the process proving that this differential equation is hypergeometric). In [23],
Kloosterman also shows that the Picard-Fuchs equation associated with the Dwork
family is hypergeometric. Here we offer how our algorithm can also lead to this
result, in a very straightforward manner.

Acknowledgements. As most of this work is based on the author’s Ph.D. thesis
[27] , she would like to primarily thank her advisor Fernando Rodŕıguez-Villegas for
his guidance, support, and great ideas. Many people contributed to the progress
of this thesis, and among them the author would like to thank Kiran Kedlaya,
Frits Beukers, and Daqing Wan, and the Arizona Winter School for allowing her to
meet these great mathematicians. Finally, the author would like to thank Michelle
Manes, Bianca Viray, and ICERM for encouraging the first submission of this paper,
Jonathan Webster for his computational number theory advice, Nestor Guillen for
his help with unraveling pullbacks of differential equations, and the referees for
their helpful and insightful suggestions.

2. Background

2.1. Hypergeometric Functions.

Definition 2.1. Let, A,B ∈ Z and α1, . . . , αA, β1, . . . , βB ∈ Q, with all of the
βi ≥ 0. The generalized hypergeometric function is defined as the series
(taking z ∈ C)

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 3

AFB(α1, . . . , αA;β1, . . . , βB|z) =
∞
∑

k=0

(α1)k · · · (αA)kz
k

(β1)k · · · (βB)kk!
,

where we use the Pochhammer notation

(x)k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
.

The αi will be referred to as “numerator parameters” and the βi as “denominator
parameters”.

Sometimes we will use the shortened notation

AFB(α;β|z) = AFB(α1, . . . , αA;β1, . . . , βB|z).

Let θ denote the operator z
d

dz
. The series AFB(α;β|z) satisfies the differential

equation

{θ(θ + β1 − 1) · · · (θ + βB − 1)− z(θ + α1) · · · (θ + αA)} y = 0.

Following the notation in [2],

D(α1, . . . , αA;β1, . . . , βB) = θ(θ + β1 − 1) · · · (θ + βB − 1)− z(θ + α1) · · · (θ + αA).

If A = B +1 this is a Fuchsian differential equation with regular singularities at
z = 0, 1,∞ (in Section 5 we will review these definitions). We will focus only on
hypergeometric functions with this property.

Notice that the parameters αi, βi completely characterize the hypergeometric
function and its corresponding differential equation.

2.2. Hypergeometric Groups. In Section 5, we will use a certain property of
monodromy groups in order to relate the Gauss-Manin connection to hypergeomet-
ric functions. First, we need some definitions from [2].

Let H be the fundamental group π1(P
1 \ {0, 1,∞}, z0) where z0 is some fixed

base point, for example z0 = 1
2 . Then clearly H is generated by g0, g1, g∞ with the

relation g∞g1g0 = 1, as pictured below.
Recall that the differential equation for a hypergeometric function of the form

nFn−1(α;β|z) is Fuchsian with regular singular points 0, 1,∞. Around a regular
point, for example z0 = 1

2 , there are n linearly independent analytic solutions with
a non-zero radius of convergence. Let A,B,C ∈ GL(V) be determined by analytic
continuation of solutions along the generators of π1(P

1 \ {0, 1,∞}, z0), so that

A ↔ g∞
B ↔ g0
C ↔ g1

The group Γ ⊂ GL(V) generated by A,B,C with the relation ACB = Id is
called the monodromy group, and the map

H → GL(V)

g∞, g0, g1 7→ A,B,C,

is a representation of H .

4 ADRIANA SALERNO

z0

0 1

g0 g1

g∞

Figure 1. The generators of π1(P
1 \ {0, 1,∞}, z0)

Definition 2.2. Let V be a finite dimensional complex vector space. A linear map
g ∈ GL(V) is called a reflection if g − Id has rank one. The determinant of a
reflection is called the special eigenvalue of g.

Definition 2.3. Suppose a1, . . . , an, b1, . . . , bn ∈ C∗ with aj 6= bk for all j =
1, . . . , n. A hypergeometric group with numerator parameters a1, . . . , an and de-
nominator parameters b1, . . . , bn is a subgroup of GL(n,C) generated by elements
h0, h1, h∞ ∈ GL(n,C) such that h∞h1h0 = Id,

det(z − h∞) =

n
∏

i=1

(z − aj)

det(z − h−1
0) =

n
∏

j=1

(z − bj),

and h1 is a reflection in the sense of Definition 2.2.

Then we have the following useful result.

Proposition 2.1. [2] Suppose a1, . . . , an, b1, . . . , bn ∈ C∗ with aj 6= bk for all
j, k = 1, . . . , n and assume bn = 1. Let α1, . . . , αn, β1, . . . , βn−1 ∈ C be such that
aj = e2πiαj for j = 1, . . . , n and bk = e2πiβk for k = 1, . . . , n − 1 . Then the
monodromy group of the hypergeometric equation

D(α1, . . . , αn;β1, . . . , βn−1)y = 0

is a hypergeometric group with parameters a1, . . . , an, b1, . . . , bn.

Levelt, in his thesis, proved that hypergeometric groups are uniquely determined
by the parameters (up to conjugation).

Theorem 2.2 (Levelt). Suppose a1, . . . , an, b1, . . . , bn ∈ C∗ with aj 6= bk for all
j, k = 1, . . . , n. Let A1, . . . , An, B1, . . . , Bn ∈ C be defined by

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 5

n
∏

j=1

(t− aj) = tn +A1t
n−1 + · · ·+An,

n
∏

j=1

(t− bj) = tn +B1t
n−1 + · · · bn

and let A,B ∈ GL(n,C) be given by

A =













0 0 . . . 0 −An

1 0 . . . 0 −An−1

0 1 . . . 0 −An−2

. . .
0 0 . . . 1 −A1













, B =













0 0 . . . 0 −Bn

1 0 . . . 0 −Bn−1

0 1 . . . 0 −Bn−2

. . .
0 0 . . . 1 −B1













,

Then the matrices h∞ = A, h0 = B−1, h1 = A−1B generate a hypergeometric group
with parameters a1, . . . , an, b1, . . . , bn. Moreover, any hypergeometric group with the
same parameters is conjugated inside GL(n,C) to this one.

Remark 2.1. The most important consequence of the previous two results is that if
we have a hypergeometric group Γ in the sense of the Definition 2.3, we can find a
hypergeometric differential equation whose monodromy group is Γ, with parameters
determined by the eigenvalues of h0 and h∞.

3. Dwork’s construction

Suppose X is a hypersurface in Pn−1, and so it is n − 2 complex dimensional.
The middle deRham cohomology will be the (n−2)-th cohomology. It is a classical
result by Lefschetz that the i-th deRham cohomology of a non-singular projective
hypersurface of dimension n−2 is identical to the i-th deRham cohomology of Pn−1,
for i 6= n− 2. In other words, the middle cohomology is the only “interesting” one.

Recall the Dwork family of hypersurfaces defined by

Xλ : xn
1 + · · ·+ xn

n − nλx1 · · ·xn = 0.

It is not difficult to see that Xλ is not smooth if and only if λ is an n-th
root of unity. Let T = C − µn. It follows that Xλ is non singular for λ ∈ T .
Dwork constructed modules over C isomorphic to the relative deRham cohomology
Hn−2

dR (Xλ/T), which are quite combinatorial in nature.
To give Dwork’s construction, we will use the notation established in [18]. Let

Fλ(x1, . . . , xn) := xn
1 + · · ·+xn

n−nλx1 · · ·xn. Let L be the free module (over C(λ))
generated by the monomials

xw1
1 · · ·xwn

n = xw,

with all the wi ≥ 0 and
∑n

i=1 wi ≡ 0 mod n.
Let L

S be the submodule generated by monomials xw with all wi ≥ 1. Let Di

be the mapping defined by

Di : L → L, Di(x
w) = wix

w + xi

∂Fλ

∂xi

xw.

So Di(x
w) = wix

w + nxn
i x

w − nλx1 · · ·xnx
w .

We now define the C(λ)-module

W = L
S/LS

⋂

(

n
∑

i=1

DiL

)

.

6 ADRIANA SALERNO

In fact, W is a vector bundle over T .

Notation. We will frequently represent a monomial xw by its exponent w and the
notation cw signifies cxw, where c ∈ C(λ).

In this notation, observe that the space W has n relations of the form:

wi(w1, . . . , wn) + n(w1, . . . , wi + n, . . . , wn)− nλ(w1 + 1, . . . , wn + 1) = 0

coming from the quotient by the Di defined above.
This can be rearranged as

(w1, . . . , wn) =
n− wi

n
(w1, . . . , wi−n, . . . , wn)+λ(w1+1, . . . , wi−n+1, . . . , wn+1).

Notice that this implies that any monomial with a power larger than n can be
written in terms of two other monomials in W . In fact, this is going to give us a
way to reduce any monomial with powers larger than n to a linear combination of
monomials with powers between 1 and n− 1. That is the content of the following
Algorithm.

Algorithm 1 (Reduction Algorithm). We define an algorithm on n-tuples w using
the relations given by the quotient described above. The input for this algorithm
is cw = c(w1, w2, . . . , wn), where c is an element of C(λ), and w is an n-tuple
representing a monomial in W where wi ≥ n for some i. The output is a list
that represents how to write cw as a linear combination of monomials for which all
exponents are less than n, thus “reducing” w.

(1) Initialize two empty lists, L and M .
(2) Let i be the first entry such that wi ≥ n. Define u = cλ(w1 + 1, w2 +

1, . . . , wi − n + 1, . . . , wn + 1) and v = cn−wi

n
(w1, . . . , wi − n, . . . , wn). If

n−wi

n
6= 0:

(a) If vi < n for all i, append v to list L, unless (w1, . . . , wi − n, . . . , wn)
is already in the list, then add cn−wi

n
to the existing coefficient. Go to

step 3.
(b) If vi ≥ n for some i, append v to list M , unless (w1, . . . , wi−n, . . . , wn)

is already in the list, then add cn−wi

n
to the existing coefficient. Go to

step 3.
(3) If ui < n for all i, append u to L and proceed to step 4 (here if u is already

in L we add coefficients as before). Otherwise, proceed to step 5.
(4) If the list M is empty, output the list L. Otherwise, proceed to step 8.
(5) If u = w, proceed to step 6. Otherwise, proceed to step 7.
(6) If the list M is empty, output the list L but with all coefficients divided by

1− λn. Otherwise, proceed to step 8.
(7) Append u to M and proceed to step 8.
(8) Let a be the first element in M . Apply step 2 to a instead of w and remove

a from M .

Proof. Notice that we stop the algorithm whenever the list M is empty. The list
M contains monomials with entries that are greater than or equal to n. To prove
the algorithm terminates we need to prove that using this reduction process we can
always empty the list.

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 7

Given any starting n-tuple w, the worst that can happen is that every entry
is greater than or equal to n. In this case, the first step would be to set u =
cλ(w1 − n + 1, w2 + 1, . . . , wn + 1) and v = cn−w1

n
(w1 − n, . . . , wn) . At most

two monomials get added to M (v is added only if its coefficient is nonzero). We
remove the first monomial (suppose this is u) and apply the reduction again. So
u2 = cλ2(w1 − n + 2, w2 − n + 2, . . . , wn + 2) and v2 = cλn−w2

n
(w1 − n + 1, w2 −

n + 1, . . . , wn + 1). Once more, at most two monomials get added to M . But
now notice that the next item on the list would be v. Applying the reduction to
this monomial would give u3 = cλn−w1

n
(w1 − n + 1, w2 − n + 1, . . . , wn + 1) and

v3 = cn−w1

n
n−w2

n
(w1 − n,w2 − n, . . . , wn). Notice that u3 = kv2, where k is some

constant, and thus for each pair of monomials we remove we are only really adding,
at most, the number of monomials we had before plus one.

One can visualize the process in a diagram as follows:
(w1, w2, . . . , wn)

(n−w1)/n

��

λ

**TTTTTTTTTTTTTTTT

(w1 − n,w2, . . . , wn)

(n−w2)/n

��

λ

**TTTTTTTTTTTTTTTT
(w1 − n+ 1, w2 + 1, . . . , wn + 1)

(n−w2)/n

��

λ

++VVVVVVVVVVVVVVVVVVV

(w1 − n,w2 − n, . . . , wn) (w1 − n+ 1, w2 − n+ 1, . . . , wn) (w1 − n+ 2, w2 − n+ 2, . . . , wn + 2)

In the tree above, there are two types of arrows, which we will denote “down”
and “right”. Notice the down arrows indicate the operation of subtracting n from
the first position that is greater than n, and this process clearly terminates. That
is, all of the columns in the tree terminate eventually. The only concern, then, is
whether the top “right” portion of the tree terminates.

Now notice that the right arrows involve subtracting n from the first entry larger
than n and then adding 1 to all entries. If this process does not terminate in a
monomial whose entries are all less than n then at the n-th reduction step we will
find the monomial (w1 − n+ n,w2 − n+ n, . . . , wn − n+ n) = w. Either way, the
top right portion of the tree has to end, and the algorithm finishes once we have
emptied M . But “emptying M” is equivalent to traveling through the whole tree,
which we now know is finite. Thus, the algorithm terminates. �

Corollary 3.1. W is generated over C(λ) by the set of monomials

B =
{

xw1
1 · · ·xwn

n = xw|1 ≤ wi ≤ n− 1,
∑

wi ≡ 0 mod n
}

.

In particular, W has dimension

(n− 1)(n−1) − (n− 1)(n−2) + (n− 1)(n−3) − · · · ± (n− 1).

Proof. The first statement is a direct consequence of Algorithm 1.
For the second statement, it is a short calculation to verify that B has

(n− 1)(n−1) − (n− 1)(n−2) + (n− 1)(n−3) − · · · ± (n− 1)

elements.
The last thing one needs to show is that these monomials are linearly indepen-

dent, and thus form a basis for W . For this, we appeal to Lemma 3.19 in [11]. The
dimension of the space in Dwork’s construction is exactly the same as the one we
get from the generating set B, and thus our set must be linearly independent.

�

8 ADRIANA SALERNO

The vector bundle W is equipped with an integrable connection ∇ defined by

∇(f(λ)xw) =
∂

∂λ
f(λ)xw + f(λ)

∂

∂λ
Fλx

w .

In particular, for monic monomials,

∇(xw) =
∂

∂λ
Fλx

w = −nx · xw.

Katz, in [18], proved the following useful lemmas.

Theorem 3.2 (The Comparison Theorem). Let w0 = 1
n

∑n
i=1 wi. There is a T -

linear map R : LS → Hn−1
dR (Pn −Xλ/T) given by

R : xw 7→ (−1)w0(w0 − 1)!
xw

Fw0

λ

d(x1/xn)

x1/xn

∧ · · · ∧
d(xn−1/xn)

xn−1/xn

.

By this theorem and the residue map (cf. [14]) we have an isomorphism from
Hn−1

dR (Pn −Xλ/T) to Hn−2
dR (Xλ/T).

And we have the following:

Theorem 3.3. The map Θ induces, by passage to quotients, an isomorphism

Θ : W
∼
→ Hn−2

dR (Xλ/T),

which is compatible with the connection.

Hence the space W obtained through Dwork’s construction is isomorphic to the
middle (relative) deRham cohomology.

It is also important to note that Θ transforms ∇ into the Gauss-Manin connec-
tion.

4. Computing the connection matrix

Let µn
n denote the group of n-tuples of n-th roots of unity, and ∆ denote the

diagonal elements.
The character group of µn

n/∆ is in one-to-one correspondence with the set

W = {(w1, . . . , wn)|0 ≤ wi < n,
∑

wi ≡ 0 mod n},

where

χw(ξ) := χ(ξw), ξw = ξw1
1 · · · ξwn

n

and χ is a fixed primitive character of µn.
Let

G = {ξ ∈ µn
n|ξ1 · · · ξn = 1}/∆.

The characters χw of µn
n/∆ which act trivially on G are precisely powers of χ1,

where 1 = (1, 1, . . . , 1). Thus, Char(G), the character group of G, corresponds to
equivalence classes of w in W , where w′ ∼ w if w − w′ is a multiple (mod n) of 1.

The family Xλ allows a faithful action of the group G by ξ = (ξ1, . . . , ξn) taking
the point (x1, . . . , xn) to (ξ1x1, . . . , ξnxn). Using this action, we get that W splits
into eigenspaces as follows.

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 9

Proposition 4.1. The action of G on W gives

W =
⊕

χ∈Char(G)

W(χ),

where W(χ) is an eigenspace with basis

{w,w + 1(modn), . . . , w + n− 1(modn)},

but we exclude adding any vector m such that m+ wi ≡ 0 mod n for some i.

To understand ∇’s effect on W , it is sufficient to know what it does to elements
in the basis B. From the definition of ∇ we see that

∇(xw) =
∂

∂λ
Fλx

w = −nxw+1

where w + 1 = (w1 + 1, . . . , wn + 1).
Thus, the connection commutes with the action of G, so the proposition implies

that ∇ preserves eigenspaces. We want to compute the connection matrix ∇.
Because of the way in which ∇ preserves eigenspaces, the connection matrix will
have blocks on its diagonal for each eigenspace.

The main idea of the following algorithm is to use the reduction algorithm de-
scribed earlier on ∇(xw) where w runs through the basis of an eigenspace.

Algorithm 2 (Computing a block of the connection matrix). This algorithm takes
any vector of integers as an input and outputs a matrix that is the block of the
connection matrix that corresponds to that vector’s eigenspace generators.

(1) Create a basis of the eigenspace related to w by computing B = {w,w +
1(modn), . . . , w + n− 1(modn)} = {v1, . . . , vk}, where we omit monomi-
als which have entries equal to 0 mod n (so k may or may not equal n).

(2) Create M , a k × k matrix of zeros.
(3) Let i = 1.
(4) If i = k+1, output M . Otherwise, take the monomial vi in B and compute

its derivative, that is ∇(vi) = −n(vi + 1).
(5) If all the entries in ∇(vi) are less than n, then add −n to the (i, i + 1)

position in M , add 1 to i, and go back to Step 4. If not, proceed to the next
step.

(6) Reduce ∇(vi) according to Algorithm 1. From the algorithm, we have ∇(vi)
as a linear combination of elements of B, so that ∇(vi) = α1v1 + · · ·αkvk.
Replace the i-th row of M by (α1, . . . , αk). Add 1 to i and go to Step 4.

5. The differential equation associated to the connection

In this section, we will show that the differential equation associated to the con-
nection ∇ is related to a hypergeometric differential equation. We have developed
an algorithm which outputs the parameters α, β given each block representative.

We will first establish some notation and definitions. For more details and proofs,
see for example [3], [6], or [15].

Consider the nth order equation

(1)

n
∑

m=0

an−m(z)y(m) = 0, (a0(z) ≡ 1)

10 ADRIANA SALERNO

where the ak(z) are single-valued and analytic in a punctured neighborhood of a
point z0. Recall that if any of the ak have a singularity at z0, then z0 is called a
singular point for (1), otherwise it is called an analytic point. We say z0 is a regular
singular point if

(2) ak(z) = (z − z0)
−kbk(z), (k = 1, . . . , n),

where bk is analytic at z0.
A system of n first order equations over C(z) has the form

(3) y′ = Ay

in the unknown column vector y = (y1, . . . , yn)
T and where A is an n × n-matrix

with entries in C(z). The entries are assumed to be single-valued and analytic at a
neighborhood of a point z0, and will at most have a pole at that point.

If A has a singularity at z0, then z0 is a singular point for the system (3). z0 is
a regular singular point if

A(z) = (z − z0)
−1Ã(z)

where Ã is analytic for a neighborhood of z0 (including z0), and Ã(z0) 6= 0.
A differential system or a differential equation for which all singularities are

regular is called Fuchsian.
To study the system at ∞, we change variables from z to 1/ζ. The associated

system is

dỹ

dζ
= −

Ã(ζ)

ζ2
ỹ.

It is not difficult to see that a differential equation like (1) can be rewritten
as a system by setting y1 = y, y2 = y′, . . . , yn = y(n−1). Notice that this means
y′1 = y2, y

′
2 = y3, . . . , y

′
n−1 = yn, and y′n is given by the differential equation. So

the differential system is determined by a companion matrix, as follows:

(4)
d

dz











y1
y2
...
yn











=











0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−an −an−1 −an−2 · · · −a1





















y1
y2
...
yn











.

Now, we will explain how a system of first order differential equations arises from
the connection. Recall that, on a vector bundle, being equipped with a connection

∇ is equivalent to being equipped with an action of
d

dλ
(see for example [22] for a

detailed explanation). In short, we have a first-order system defined by

d

dλ
y = Ay,

where A is actually the transpose of the matrix we found in the previous section.
In fact, each block defines its own differential system. We will use the following
fact:

Theorem 5.1 (Cyclic Vector Lemma). Any system of linear first order differential
equations is equivalent to a system which comes from a differential equation.

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 11

A proof of the lemma can be found in [12].
Basically, this theorem says that in the space of solutions of our differential

system there is a cyclic vector, that is, a vector such that

v,
dv

dλ
,
d2v

dλ
, . . . ,

dn−1v

dλ

is a basis. More specifically, this means that if y = (y1, y2, . . . , yn)
T is a solution

for the system, we can find an equivalent system with solutions of the form ŷ =
(

ŷ1,
dŷ1
dλ

, . . . ,
dn−1ŷ1
dλn−1

)T

. In fact, using the system, we can represent the derivatives

ŷ
(k)
1 as a linear combination of y1, . . . , yn. This determines a change of basis matrix
S such that Sy = ŷ.

The vector Sy = ŷ satisfies a differential system of the form

d

dλ
ŷ =

(

SAS−1 +
dS

dλ
S−1

)

ŷ,

and this last system is the companion matrix to a higher order differential equation.
In our situation, since the basis vectors are basically already derivatives of each
other, any vector in the basis, for example y1, is a cyclic vector, and so S is easy

to determine. Let AS =

(

SAS−1 +
dS

dλ
S−1

)

.

Notice that, from the reduction algorithm, the entries in the connection matrix
are rational functions in λ. Furthermore, 1 − λn is the only possible non-trivial
denominator. After doing the change of basis described above, we may get some
powers of λ in the denominator, but as the new system is a companion matrix, this
will only happen in the last row of the matrix.

At this point, we have a differential equation associated to the connection. But
solving high order differential equations is not a simple task. Instead, we will show
that these matrices are related to a hypergeometric group, which in turn gives us
the defining parameters of the hypergeometric differential equation we want to find.

We have a way of changing from a differential equation to a system and viceversa.
It is important to note that a regular singular point of (1) z0 may not be a regular
singular point of the system associated with it. This happens only when the ak
have at most simple poles at z0. However, there is an equivalent first-order system
with the property that if z0 is a regular singular point of (1) then z0 is a regular
singular point of the system.

Suppose (1) has a regular singularity at z0, and let φ be a solution of (1). Define

φ̂ to be the vector with components φ1, . . . , φn by setting

φk = (z − z0)
k−1φ(k−1), (k = 1, . . . , n).

Then, clearly,

(z − z0)φ
′
k = (z − z0)((z − z0)

k−1φ(k−1))′

= (z − z0)((k − 1)(z − z0)
k−2φ(k−1) + (z − z0)

k−1φ(k))

= (k − 1)(z − z0)
k−1φ(k−1) + (z − z0)

kφ(k)

= (k − 1)φk + φk+1 (k = 1 . . . , n− 1)

And, finally,

12 ADRIANA SALERNO

(z − z0)φ
′
n = (n− 1)φn −

n
∑

m=1

bn−m+1(z)φm,

where the bi are defined as in (2).

Therefore φ̂ is a solution of the linear system

(5) y′ = Â(z)y

where Â has the structure

Â(z) = (z − z0)
−1























0 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 2 1 · · · 0
0 0 0 3 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
−bn −bn−1 −bn−2 −bn−3 · · · (n− 1)− b1























This system clearly has a regular singularity at z0.
In our situation, we want a hypergeometric differential system, so in particular

we want a simple pole at λ = 0. We can accomplish this by replacing the matrix
AS by the matrix Â, which has a simple pole at 0. In particular, now we are certain
that the only denominators in the last row are of the form 1− λn.

Recall that a hypergeometric differential system must only have regular singu-
larities at 0, 1, and ∞. The previous step took care of 0 and ∞, but we have
singularities at all n-th roots of unity, not just 1. We will deal with this by chang-
ing variables to z = λn. We will first discuss how this changes our differential
system. By the chain rule, we have:

d

dλ
y =

d

dz
y
d

dλ
z =

d

dz
y ∗ nλ(n−1)

The system representing the derivative with respect to z is y′ = By where

B =
1

nλ(n−1)
Â. Since Â has a simple pole at λ = 0, replacing every instance of λn

by z gives that B has a simple pole at z = 0 as well, but now we also have a simple
pole at z = 1. So, in fact, the system satisfied by the Gauss-Manin connection
is the pullback by the n-th power map of the new system involving B. We will
proceed to solve y′ = By, as this will be the hypergeometric system we want.

There is an algorithm by Brieskorn which relates Gauss-Manin connections to
monodromy group generators [4]. Let A be the matrix representation of the con-
nection. The algorithm uses the fact that if A has a simple pole around a given
point, i.e. can be written as

A = A−1(z − z0)
−1 +A0 +A1(z − z0) + · · ·

then the eigenvalues of R = e2πiA−1 are the eigenvalues for the monodromy around
z0.

The process of changing the system matrix to B ensures that we have a simple
pole around zero, one, and infinity. Since this last system has regular singular
points at 0, 1,∞ and no other singularities, it is Fuchsian, as we expected.

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 13

Let B−1 denote the residue around zero, and B̃−1 denote the residue at ∞. Just

as above, the eigenvalues of h0 = e2πiB−1 and the eigenvalues of h∞ = e2πiB̃−1 give
the eigenvalues of the monodromies around 0 and ∞ respectively. Let D be the
residue of B around z = 1. One can see by looking at the eigenvalues of h1 = e2πiD

that it is clearly a reflection in the sense described by Beukers and Heckman. This
is easily checked by noticing that there is only one row with denominators of the
form 1− z. Thus, the residue at one will necessarily have rank one, which implies
that h1 − Id has rank one.

Recall that by Remark 2.1, a hypergeometric group is uniquely determined,
up to common conjugation, by the eigenvalues of the monodromies. Thus, we have
shown that the eigenvalues of the matrices h∞, h1, h0 define a hypergeometric group,
associated to a unique hypergeometric differential equation where the eigenvalues
of B−1 will be the β’s and the eigenvalues of B̃−1 will be the α’s. Therefore, the
monodromy group we have found corresponds to the differential equation

D(α;β|z)y = 0,

where the α’s are the eigenvalues of B̃−1 and the β’s are the eigenvalues of B−1.
Now, recall that the original differential equation satisfied by the connection is

a pullback by the n-th power map of the one we just found. So in fact, we get that
the hypergeometric function associated to the differential equation satisfied by the
Gauss-Manin connection is

nFn−1(α;β|λ
n)y = 0.

This completes our algorithmic proof that every block of the Gauss-Manin con-
nection for the Dwork family is related to a hypergeometric function.

Here is the algorithm we have just described.

Algorithm 3 (Computing the parameters of the hypergeometric differential equa-
tion). This algorithm takes as input a monomial w and computes the parameters
of the hypergeometric differential equation associated to the eigenspace generated by
w. The output is two lists, α and β, containing the parameters.

(1) Let A be the k × k connection matrix block associated to w, computed with
Algorithm 2.

(2) Compute the change of basis matrix, S, given by assuming w as a cyclic
vector.

(3) Compute AS =

(

SAS−1 +
dS

dλ
S−1

)

.

(4) Compute Â by multiplying ak,j by λk−j+1 and adding i − 1 in the (i, i)
position of AS for i = 1, . . . , k . This means that in the (k, k) position we
have k − 1 + λak,k.

(5) Multiply Â by 1/n, call this B.
(6) Let h0 = Resz=0B and compute the eigenvalues. Let β be the list of eigen-

values.
(7) Let h∞ = Resz=∞B and compute the eigenvalues. Let α be the list of these

eigenvalues.
(8) Output: α, β.

Remark 5.1. While computing some examples, we noticed that given a vector
(w1, w2, . . . , wn), if we cancel out the numbers which it has in common with the

14 ADRIANA SALERNO

list (0, 1, 2, . . . , n− 1), then αi =
wj

n
for each wj that survives the cancelation, and

βi =
k
n
for each k that survives in the second vector. This is exactly Katz’s main

result in the case of hypergeometric sheaves [20].

6. An Illustrative Example

Suppose n = 6. By Algorithm 1 we have that

W =
〈

xw|1 ≤ wi ≤ 5,
∑

wi ≡ 0 mod 6
〉

,

and W has dimension 55 − 54 + 53 − 52 + 5 = 2605.
Take w = (1, 1, 1, 2, 2, 5). This belongs to the eigenspace generated by

B(1,1,1,2,2,5) = {(1, 1, 1, 2, 2, 5), (3, 3, 3, 4, 4, 1), (4, 4, 4, 5, 5, 2)}.

Here is an example of the algorithm for computing the block in the matrix
representation of ∇ for n = 6 and the eigenspace corresponding to the monomial
(1, 1, 1, 2, 2, 5) ∼ x1x2x3x

2
4x

2
5x

5
6, with basis denoted earlier by B(1,1,1,2,2,5). I will

denote this block by ∇B(1,1,1,2,2,5)
.

(1) Apply ∇(1, 1, 1, 2, 2, 5) = −6(2, 2, 2, 3, 3, 6). Using the relations we can
write this last monomial in terms of the monomials in B(1,1,1,2,2,5). We can
represent the process of Algorithm 1 graphically, as shown below:

(2, 2, 2, 3, 3, 6)

0

zzttttttttt
λ

$$
JJJJJJJJJ

(2, 2, 2, 3, 3, 0) (3, 3, 3, 4, 4, 1)

This means that (2, 2, 2, 3, 3, 6) = λ(3, 3, 3, 4, 4, 1)+0 · (2, 2, 2, 3, 3, 0), which
is a monomial in B(1,1,1,2,2,5).

Thus, in the matrix representation of ∇B(1,1,1,2,2,5)
, there will be a −6λ

as the (2, 1) entry.
(2) We repeat this process for the next monomial in the basis, (3, 3, 3, 4, 4, 1).

Applying the connection we get ∇(3, 3, 3, 4, 4, 1) = −6(4, 4, 4, 5, 5, 2). Since
this monomial is already in B we write −6 in the (3, 2) position in the block
matrix.

(3) Take ∇(4, 4, 4, 5, 5, 2) = −6(5, 5, 5, 6, 6, 3). We have to do the reduction
process again, represented below.

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 15

(5, 5, 5, 6, 6, 3)

0

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(5, 5, 5, 0, 6, 3) (6, 6, 6, 1, 7, 4)

−1/6

||xx
xx

xxx
x

λ

""
FFF

FF
FFF

(6, 6, 6, 1, 1, 4)

0

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(7, 7, 7, 2, 2, 5)

−1/6

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(0, 6, 6, 1, 1, 4) (1, 7, 7, 2, 2, 5)

−1/6

||xx
xx

xxx
x

λ

""
FFF

FF
FFF

(2, 8, 8, 3, 3, 6)

−2/6

||xxx
xxx

xx
λ

""
FF

FF
FFF

F

(1, 1, 7, 2, 2, 5)

−1/6

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(2, 2, 8, 3, 3, 6)

−2/6

||xx
xx

xxx
x

λ

""
FFF

FFF
FF

(3, 3, 9, 4, 4, 7)

−3/6

||xxx
xx

xxx
λ

""
FF

FF
FFF

F

(1, 1, 1, 2, 2, 5) (2, 2, 2, 3, 3, 6)

0

||xx
xx

xxx
x

λ

""
FFF

FF
FFF

(3, 3, 3, 4, 4, 7)

−1/6

||xxx
xxx

xx
λ

""
FF

FF
FFF

F
(4, 4, 4, 5, 5, 8)

−2/6

||xx
xxx

xxx
λ

""
FF

FFF
FFF

(2, 2, 2, 3, 3, 0) (3, 3, 3, 4, 4, 1) (4, 4, 4, 5, 5, 2) (5, 5, 5, 6, 6, 3)

This is a bit harder to unravel than the other cases, but it works in
exactly the same way. The diagram shows us that

(5, 5, 5, 6, 6, 3) = −
λ2

108
(1, 1, 1, 2, 2, 5)+

17λ4

36
(3, 3, 3, 4, 4, 1)

−
3λ5

2
(4, 4, 4, 5, 5, 2) + λ6(5, 5, 5, 6, 6, 3).

And solving for (5, 5, 5, 6, 6, 3) we get that

∇(4, 4, 4, 5, 5, 2) = −6(5, 5, 5, 6, 6, 3)

= −
λ2

18(λ6 − 1)
(1, 1, 1, 2, 2, 5) +

17λ4

6(λ6 − 1)
(3, 3, 3, 4, 4, 1)

−
9λ5

λ6 − 1
(4, 4, 4, 5, 5, 2).

(4) Combining all of these steps, we can write ∇B(1,1,1,2,2,5)
as

∇B(1,1,1,2,2,5)
=

















0 0 −
λ2

18(λ6 − 1)

−6λ 0
17λ4

6(λ6 − 1)

0 −6 −
9λ5

λ6 − 1

















.

We will now describe the algorithm for finding the parameters of the differential
equation for the same example monomial. The connection above gives us that
differentiation with respect to λ is equivalent to the differential system

16 ADRIANA SALERNO

d

dλ
y =









0 −6λ 0
0 0 −6

−
λ2

18(λ6 − 1)

17λ4

6(λ6 − 1)
−

9λ5

λ6 − 1









y.

We compute the change of basis for the cyclic vector lemma, which is

S =





1 0 0
0 −6λ 0
0 −6 36λ



 .

And so we have the new system

d

dλ
y =

(

SAS−1 +
dS

dλ
S−1

)

y =









0 1 0
0 0 1

2λ3

1− λ6

10λ6 − 2

λ2(1− λ6)

7λ6 + 2

λ(1− λ6)









y,

which, as we expected, is given by the companion matrix for a third order differential
equation.

This system is equivalent to

d

dλ
y =

1

λ







0 1 0
0 1 1

2λ6

1− λ6

10λ6 − 2

1− λ6
2−

7λ6 + 2

1− λ6






y,

which clearly has a simple pole at λ = 0.
Now we can change variables by setting z = λ6. The change of variables leaves

us with a system

d

dλ
y =

1

z







0 1/6 0
0 1/6 1/6
z

3(1− z)

5z − 1

3(1− z)

5z + 4

6(1− z)






y.

The residue at zero is

A−1 =





0 1/6 0
0 1/6 1/6
0 −1/3 2/3



 ,

which has eigenvalues 0, 1/2, 1/3.
Also, around infinity we have

dỹ

dζ
=

1

ζ









0 −1/6 0
0 −1/6 −1/6
1

3(1− ζ)

5− ζ

3(1− ζ)

5 + 4ζ

6(1− ζ)









ỹ,

which has residue (at ζ = 0) of

Ã−1 =





0 −1/6 0
0 −1/6 −1/6

1/3 5/3 5/6



 ,

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 17

and thus yields the eigenvalues 1/3, 1/6, 1/6.
We have now found the parameters of the hypergeometric differential equation

associated to this connection matrix block:

D

(

1

6
,
1

6
,
1

3
;
1

2
,
2

3

)

y = 0.

To sum it up, the block of the matrix ∇ corresponding to the eigenspace of
(1, 1, 1, 2, 2, 5) gives rise to the hypergeometric differential equation which has

3F2

(

1

6
,
1

6
,
1

3
;
1

2
,
2

3

∣

∣

∣

∣

λ6

)

as its holomorphic solution around 0.
Table 1 below shows some numerical examples for n = 6.

Table 1. Parameters for n = 6

Monomial αi βi

[1, 1, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6
,
1

6
,
1

6

] [

1

2
,
2

3
,
5

6
,
1

3

]

[5, 3, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6

] [

2

3
,
1

3

]

[4, 4, 1, 1, 1, 1]

[

1

6
,
1

6
,
1

6
,
2

3

] [

1

3
,
1

2
,
5

6

]

[5, 2, 2, 1, 1, 1]

[

1

3
,
1

6
,
1

6

] [

1

2
,
2

3

]

[4, 3, 2, 1, 1, 1]

[

1

6
,
1

6

] [

5

6

]

[3, 3, 3, 1, 1, 1]

[

1

2
,
1

2
,
1

6
,
1

6

] [

2

3
,
5

6
,
1

3

]

[4, 2, 2, 2, 1, 1]

[

1

3
,
1

3
,
1

6

] [

1

2
,
5

6

]

[3, 3, 2, 2, 1, 1]

[

1

2
,
1

3
,
1

6

] [

2

3
,
5

6

]

[3, 2, 2, 2, 2, 1]

[

1

3
,
1

3
,
1

3

] [

2

3
,
5

6

]

[5, 5, 3, 3, 1, 1]

[

1

6
,
1

2
,
5

6

] [

1

3
,
2

3

]

[5, 5, 4, 2, 1, 1]

[

1

6
,
5

6

] [

1

2

]

[5, 4, 4, 3, 1, 1]

[

1

6
,
2

3

] [

1

3

]

[5, 4, 3, 3, 2, 1]

[

1

2

]

[]

[4, 4, 4, 3, 2, 1]

[

2

3
,
2

3

] [

5

6

]

18 ADRIANA SALERNO

Appendix

GP Scripts

Computing the connection matrix. This function counts the number of coor-
dinates of a vector with entries bigger than or equal to d.

count(a)=

{

local(t);

t=0;

for(k=1,length(a), if(a[k]>=length(a),t=t+1));

t

}

This function (from [25]) can tell if a given element is in a vector, and gives the
“position” of the element.

memb(g,v)=for(k=1,length(v),if(g==v[k],return(k)));0

The following function takes a vector a and an integer m (its coefficient) and
subtracts one to all the entries and adds d to one of them until it gets to 0, a vector
in the basis, or the original vector. It saves the leftovers in a vector v. It is one of
the two possible reductions coming from the relations on W .

red1(a,m)=

{

local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

t=vector(length(a));

d=length(a);

l=1;

j=1;

s=vector(length(a));

v=vector(0);

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[k]<t[j], j=k));

for(k=1,length(t),s[k]=t[k]-1);

for(k=1,length(t), if(k==j,t[k]=s[k]+d, t[k]=s[k]));

l=h*s[j]/(d*n);

v=concat(v,[[l,s]]);

h=h*1/n));

[h,t]

}

red1leftovers(a,m)=

{ local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

t=vector(length(a));

d=length(a);

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 19

l=1;

j=1;

s=vector(length(a));

v=vector(0);

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[k]<t[j], j=k));

for(k=1,length(t),s[k]=t[k]-1);

for(k=1,length(t), if(k==j,t[k]=s[k]+d, t[k]=s[k]));

l=h*s[j]/(d*n);

v=concat(v,[[l,s]]);

h=h*1/n));

v

}

Here is the other possible reduction. This one subtracts n from one spot and
adds one to everything afterwards. Saves leftovers in vector v.

red2(a,m)=

{

local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

d=length(a);

l=1;

t=vector(length(a));

v=vector(0);

j=1;

s=vector(length(a));

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[j]<t[k], j=k));

for(k=1,length(t),if(k==j,s[k]=t[k]-d,s[k]=t[k]));

for(k=1,length(t), t[k]=s[k]+1);

l=h*(-s[j])/d;

v=concat(v,[[l,s]]);

h=h*n));

[h,t]

}

red2leftovers(a,m)=

{

local(j,l,b,h,t,d,s,v,u);

h=m;

b=0;

d=length(a);

l=1;

t=vector(length(a));

v=vector(0);

j=1;

20 ADRIANA SALERNO

s=vector(length(a));

t=a;

if(count(t)>0,until(count(t)==0 || t==a,

for(k=1,length(t), if(t[j]<t[k], j=k));

for(k=1,length(t),if(k==j,s[k]=t[k]-d,s[k]=t[k]));

for(k=1,length(t), t[k]=s[k]+1);

l=h*(-s[j])/d;

v=concat(v,[[l,s]]);

h=h*n));

v

}

Now we combine these two reductions and loop until we get monomials in the
basis of W . The input of this function is a vector of any length and the output will
be the “linear combination” of that vector in terms of the basis vectors (vectors
with entries between 1 and the length).

reduction(a)=

{

local(d,b,c,u,v,w,uu, bb,j, t, s, g,r);

u=vector(0);

v=vector(0);

d=length(a);

j=1;

if(count(a)==d, u=[red1(a,1)]; v=red1leftovers(a,1),

u=[red2(a,1)];v=red2leftovers(a,1));

for(k=1, 10^d,

if(k<=length(v),

if(count(v[k][2])==0,

if(v[k][1]==0, ,b=0;

for(i=1,length(u),

if(v[k][2]==u[i][2],

u[i][1]=u[i][1]+v[k][1],

b=b+1));

if(b==length(u),u=concat(u,[v[k]]))),

if(v[k][1]==0, ,

uu=red2(v[k][2],v[k][1]);

v=concat(v,red2leftovers(v[k][2],v[k][1]));

b=0;

for(i=1,length(u),

if(uu[2]==u[i][2],

u[i][1]=u[i][1]+uu[1],

b=b+1));

if(b==length(u),u=concat(u,[uu])))),

break));

b=0;

for(k=1, length(u),

if(u[k][2]==a,

w=vector(length(u)-1);

for(j=1,k-1,w[j]=[u[j][1]/(1-u[k][1]),u[j][2]]);

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 21

for(j=k,length(u)-1,

w[j]=[u[j+1][1]/(1-u[k][1]),u[j+1][2]]),

b=b+1));

if(b==length(u), r=u, r=w);

r

}

The next step is to write the connection matrix from this, that is, write a function
that gives the derivatives of each vector in terms of the basis. In fact, there is an
easy way to write the derivative of any vector using the reduction function.

derivative(a)=

{

local(d,t,w);

d=length(a);

t=vector(d);

for(k=1,d,t[k]=a[k]+1);

if(count(t)==0,[[-d,t]],

w=reduction(t);

for(k=1,length(w),

w[k][1]=w[k][1]*(-d)); w)

}

Given a basis vector, we can find all the other basis vectors that will be a basis
for the same eigenspace.

orbit(a)=

{ local(l,m, c,ss);

d=length(a);

l=0;

c=0;

ss=1;

for(k=1,d, for(t=1,d, if(k==d-a[t], l=l+1;break)));

m=d-l;

b=vector(m); for(k=1,m, b[k]=vector(d));

b[1]=a;

for(s=1,d-1,for(t=1,d, if(s==d-a[t], , c=c+1));

if(c==d,ss=ss+1;for(t=1,d, b[ss][t]=(a[t]+s)%d));c=0);

b;

}

The following gives the matrix representation of the block of the Gauss-Manin
connection associated to a particular basis vector (i.e., it gives a block of the whole
matrix, which is related to the eigenspace related to this basis vector).

connectionmatrix(a)=

{ local(v,w,M);

v=orbit(a);

M=matrix(length(v),length(v));

for(j=1,length(v),

w=derivative(v[j]);

for(k=1,length(w),M[memb(w[k][2],v),j]=w[k][1]));

M=mattranspose(M);

22 ADRIANA SALERNO

M

}

The algorithm to find the differential equation. The following finds the de-
rivative with respect to λ of a vector with a coefficient. It is essentially the product
rule.

derivn(a)=

{ local(b,z, ww, vv);

b=deriv(a[1]);

z=derivative(a[2]);

ww=[[b,a[2]]];

vv=vector(length(z));

for(k=1,length(z), vv[k]=[a[1]*z[k][1],z[k][2]]);

for(k=1,length(vv),

if(vv[k][2]==a[2], ww[1][1]=ww[1][1]+vv[k][1],

ww=concat(ww,[vv[k]])));

ww

}

We would like to have the derivative of a vector which is a linear combination of
these monomials. This should use ideas like the function above. The first function
finds the derivative of a vector (with a coefficient) in a prescribed basis determined
by the orbit of b. The second does the same, but only outputs the vector of
coordinates, without writing the basis down.

derivv(a,b)=

{ local(v,w,z);

w=orbit(b);

v=vector(length(w));

for(i=1,length(w), v[i]=[0,w[i]]);

for(k=1,length(a),

z=derivn(a[k]);

for(j=1,length(z),

v[memb(z[j][2],w)][1]=v[memb(z[j][2],w)][1]+z[j][1]

);

);

v

}

derivv2(a,b)=

{ local(v,w,z);

w=orbit(b);

v=vector(length(w));

for(k=1,length(a),

z=derivn(a[k]);

for(j=1,length(z),

v[memb(z[j][2],w)]=v[memb(z[j][2],w)]+z[j][1]

);

);

v

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 23

}

We want to change basis, and we need a matrix that changes from our basis
obtained by using “connection” to a basis obtained from derivatives (i.e. we use the
cyclic vector theorem to write the matrix as the companion matrix to a differential
equation).

cob(a)=

{

local(z, vv, uu, w);

uu=orbit(a);

r=vector(length(uu),k,if(k==1,1));

vv=vector(length(uu), k, [r[k],uu[k]]);

z=[r];

for(k=1,length(uu)-1,

w=derivv2(vv,a);

vv=derivv(vv,a);

z=concat(z,[w])

);

S=Mat(z~);

S

}

This function takes two input vectors, one is a basis and the other a vector
indicating a linear combination of elements in this basis.

cobv(uu,r)=

{

local(z, vv, w);

vv=vector(length(uu), k, [r[k],uu[k]]);

z=[r];

for(k=1,length(uu)-1,

w=derivv2(vv,a);

vv=derivv(vv,a);

z=concat(z,[w])

);

S=Mat(z~);

S

}

The following computes what a change of basis does to the system of differential
equations, where we change from a basis found by using the connection function to
a basis of all the derivatives of a specific vector.

cobsystem(A, S)=

{

local(dS, C);

dS=matrix(length(A), length(A), X, Y, deriv(S[X,Y]));

C=S*A*1/S+dS*1/S;

C

}

Now, as seen in Section 5, we can change this system into an equivalent one with
a simple pole at 0.

24 ADRIANA SALERNO

regform(A)=

{

local(m,Areg);

m=length(A);

Areg=A;

for(k=1,m, Areg[m,k]=Areg[m,k]*n^(m-k+1));

for(k=1,m,

for(i=1,m, if (i==k, Areg[k,i]=Areg[k,i]+k-1)));

Areg

}

We need to change variables to have it in terms of z instead of λd.

varchange(A,d)=

{

for(k=1,length(A),

for(i=1,length(A),

A[k,i]=substpol(A[k,i],n^d,x)/d));

A

}

Finally we can compute the residue of the matrix at z = 0.

residuezero(A)=

{

for(k=1,length(A),

for(i=1,length(A),

A[k,i]=subst(A[k,i],x,0)));

A

}

We want a function that finds the rational roots of a polynomial with rational
coefficients (because all of our characteristic polynomials are of that form and only
have rational roots). We are using the rational roots theorem.

ratlroots(f)=

{

local(p,q,z,vv,a,b,c,n,r,j,i);

c=poldegree(f);

vv=vector(c+1);

r=vector(0);

z=vector(0);

for(k=1,c+1, vv[k]=polcoeff(f,k-1));

n=denominator(vv);

f=f*n;

a=substpol(f,x,0);

if(a==0, r=concat(r,0); f=f/x; a=substpol(f,x,0));

b=pollead(f);

p=concat(divisors(a),-divisors(a));

q=concat(divisors(b),-divisors(b));

for(k=1,length(p),

for(i=1,length(q),

if(memb(p[k]/q[i],z)==0, z=concat(z,p[k]/q[i]))));

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 25

for(i=1,length(z),

if(substpol(f,x,z[i])==0, r=concat(r,z[i]);

f=f/(x-z[i]);i=1));

r

}

We now want to combine all these steps to find the hypergeometric parameters
given a vector (or monomial) in W .

hypergcoeff(a)=

{

local(A, B, S, Azero, Ainf,f,g, vv, uu, d, m,r,t);

d=length(a);

A=connectionmatrix(a);

S=cob(a);

A=cobsystem(A,S);

A=regform(A);

A=varchange(A,d);

Azero=residuezero(A);

f=charpoly(Azero);

B=matrix(length(A),length(A));

Ainf=matrix(length(A),length(A));

for(k=1,length(A),

for(i=1,length(A),

B[k,i]=-substpol(A[k,i],x,1/y)));

for(k=1,length(A),

for(i=1,length(A),

Ainf[k,i]=subst(B[k,i],y,0)));

g=charpoly(Ainf);

r=ratlroots(f);

m=vector(length(r));

for(k=1,length(r), m[k]=1-r[k]);

\\ print("alphas ",ratlroots(g)," betas ",m)

t=[ratlroots(g),m];

t

}

Creating a hypergeometric table. To make a table like Table 6 we should be
able to check the hypergeometric coefficients somewhat systematically. So we have
to find a good way to generate basis vectors (or representatives up to permutations
of the variables). We are certain that there are more efficient ways to do this, based
on conversations with computational number theorists, but the focus of our project
is to obtain the relationship with hypergeometric functions, which this code does.

This function (also from [25]) finds all the partitions of a number m.

part(m)=

{

local(k,j,sm,sj,s, S = []);

k = j = 1;

sm = sj = vector(m+1);

26 ADRIANA SALERNO

while(k,

s = sm[k]+j;

if (s > m,

until(j <= m, j = sj[k]+1; k--);

next);

k++; sm[k]=s; sj[k]=j;

if (s == m,

S = concat(S, [vector(k-1,l, sj[k-l+1])])));

S

}

This function uses the previous one to find the partitions of a numberm of length
c and into numbers that are less than c.

part2(m,c)=

{

local(v,w,t);

v=part(m);

w=vector(0);

for(k=1,length(v),

if(length(v[k])==c,

t=count(v[k]);

if(t==0,

w=concat(w,[v[k]]))));

w

}

Now we can put this together to get representatives of the basis. We don’t
have strict representatives, but at least we eliminate the cases in which none of the
entries are equal to one, because those obviously are in an eigenspace with a vector
with entries equal to one.

basisreps(m)=

{

local(v,w);

v=vector(0);

for(k=1,ceil((m-1)/2),

w=part2(m*k,m);

for(j=1, length(w),

if(memb(1,w[j])==0, ,v=concat(v,[w[j]]))));

v

}

We now want to be able to output a table with the basis vectors and the hyper-
geometric parameters associated to them given a number d. It should turn out to
be the list of numbers in the vector that remain after canceling out with the list of
numbers between 0 and d, in accordance with Katz’s results [20].

hypergtable(d)=

{

AN ALGORITHMIC APPROACH TO THE DWORK FAMILY 27

local(v,u);

v=basisreps(d);

for(k=1,length(v), u=hypergcoeff(v[k]);

print(v[k]," ", "alphas ", u[1],

" betas ", u[2]))

}

References

[1] T.A. Abbott; K. Kedlaya; and D. Roe. Bounding Picard numbers of surfaces using p-adic
cohomology. Arithmetic, Geometry and Coding Theory (AGCT 2005), Sémin. Congr. 21,
125–159. Soc. Math. France, 2010.

[2] F. Beukers and G. Heckman. Monodromy for the hypergeometric function nFn−1. Invent.
Math., 95:325–354, 1989.

[3] Frits Beukers. Ordinary linear differential equations. Course Lecture Notes.
[4] Egbert Brieskorn. Die monodromie der isolierten singularitaten von hyperflachen.

Manuscripta Math., 2:103–161, 1970.
[5] Philip Candelas and Xenia de la Ossa. The zeta-function of a p-adic manifold, Dwork theory

for physicists. Commun. Number Theory Phys. 1, 3: 479–512, 2007.
[6] E.A. Coddington and N. Levinson. Theory of ordinary differential equations. McGraw-Hill,

1955.
[7] P. Candelas; X. de la Ossa; and F. Rodŕıguez-Villegas. Calabi-Yau manifolds over finite fields

I. http://xxx.lanl.gov/abs/hep-th/0012233.
[8] P. Candelas; X. de la Ossa; F. Rodŕıguez-Villegas. Calabi-Yau manifolds over finite fields II.

Toronto 2001, Calabi-Yau Varieties and Mirror Symmetry, hep-th/0402133:121–157.

[9] Bernard Dwork. p-adic cycles. Pub. math. de l’I.H.É.S., 37:27–115, 1969.
[10] Bernard Dwork. A deformation theory for the zeta function of a hypersurface. Proceedings of

the International Congress of Maths., pages 247–259, 1963.

[11] Bernard Dwork. On the zeta function of a hypersurface. Inst. Hautes Études Sci. Publ. Math.,
No. 12 : 5–68, 1962.

[12] Bernard Dwork; Giovanni Gerotto; and Francis J. Sullivan. An Introduction to G-Functions.
Princeton University Press, 1994.

[13] Goto, Y., Kloosterman, R., and Yui, N. Zeta-functions of certain K3-fibered Calabi-Yau
threefolds, Internat. J. Math. 22, no. 1, 67129, 2011.

[14] Philip A. Griffiths. On the periods of certain rational integrals: I. The Annals of Mathematics,
90–3:460–495, 1969.

[15] E.L. Ince. Ordinary Differential Equations. Dover Publications, 1944.
[16] Kadir, S., The Arithmetic of Calabi–Yau Manifolds and Mirror Symmetry, Oxford DPhil

Thesis (arXiv: hep-th/0409202), 2004.
[17] Nicholas M. Katz. On the differential equations satisfied by period matrices. Publ. Math.

I.H.E.S., 35:71–106, 1968.

[18] Nicholas M. Katz. On the intersection matrix of a hypersurface. Ann. Sci. École Norm. Sup.,
4–2:583–598, 1969.

[19] Nicholas M. Katz. Exponential Sums and Differential Equations. Princeton University Press,
1990.

[20] Nicholas M. Katz. Another look at the Dwork family. Algebra, arithmetic, and geometry: in
honor of Yu. I. Manin, Progr. Math., 270, 89–126. Birkhäuser Boston, Inc., 2009.

[21] N.M. Katz; T. Oda. On the differentiation of de Rham cohomology classes with respect to
parameters. J. Math. Kyoto Univ., 8:199–213, 1968.

[22] Kiran Kedlaya et. al. p-adic Geometry: Lectures from the 2007 Arizona Winter School,
University Lecture Series, volume 45. A.M.S., 2008.

[23] Remke Kloosterman. The zeta function of monomial deformations of Fermat hypersurfaces.
Algebra & Number Theory, 1:421–450, 2007.

[24] PARI/GP, version 2.3.3, Bordeaux, 2011, http://pari.math.u-bordeaux.fr/.
[25] Fernando Rodŕıguez-Villegas. Experimental Number Theory. Oxford University Press, 2007.
[26] A. Rojas-Leon and D. Wan. Moment zeta functions for toric Calabi-Yau hypersufaces. Comm.

in Number Theory and Physics, 1-3:539–578, 2007.

28 ADRIANA SALERNO

[27] Adriana Salerno. Hypergeometric Functions in Arithmetic Geometry. Thesis, University of
Texas at Austin, 2009.

[28] Lucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966.
[29] Sperber, S., and Voight, J. Computing zeta functions of nondegenerate hypersurfaces with few

monomials.(arXiv:1112.4881v2 [math.AG]). To appear in the London Mathematical Society
J. Comp. Math.

