BIOLOGY TODAY

An Issues Approach

Third Edition

BIOLOGY TODAY

An Issues Approach

Third Edition

ELI C. MINKOFF, PAMELA J. BAKER

Vice President: Denise Schanck

Text Editor: Emma Hunt

Managing Production Editor: Emma Hunt

Editorial Assistants: Emma Catherall, Frances Morgan

Production Assistant: Nicola Tidman

Copy Editor: Bruce Goatly Illustrator: Nigel Orme

Cover Designer: Joan Greenfield

Indexer: Jill Halliday

THE COVER

Soya bean, Holt Studios International Ltd.; Woodpecker (carpenter) finch, Auscape International; Unmyelinated nerves, © Lester V. Bergman/CORBIS; Double helix, © Digital Art/CORBIS; Cardiovascular scan, © Howard Sochurek, Inc./CORBIS; Danube delta, © AFP/CORBIS.

© 2004 by Eli C. Minkoff and Pamela J. Baker

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

Visit the *Biology Today* Web site: http://www.garlandscience.com

Library of Congress Cataloging-in-Publication Data

Minkoff, Eli C.

Biology today: an issues approach/Eli C. Minoff, Pamela J. Baker.—3rd ed. p. cm.

Includes bibliographical references (p.).

0-8153-4157-1 (pbk. : alk. paper)

1. Biology. I. Baker, Pamela J., 1947-II. Title.

QH315.M63 2004

570—dc21

2003011485

Published by Garland Publishing, a member of the Taylor & Francis Group 29 West 35th Street, New York, NY 10001-2299

Printed in the United States of America 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Preface

Our book takes an issues-oriented approach to the teaching of biology, one that covers all of the major biological concepts. Our approach aims to educate citizens, biologists and nonbiologists alike, with an understanding that will enable them to evaluate scientific arguments and make informed decisions affecting their own lives and the well-being of society. We are committed to teaching science as a human activity that impinges upon other aspects of society and gives rise to social issues that require discussion. Individuals are increasingly called upon to deal with science-based issues throughout their lives. Each of us makes food choices daily and medical decisions nearly as often. DNA evidence is used more and more in solving crimes and in predicting susceptibility to disease. Stem cell technologies confront us with real possibilities only imagined a few years ago. Our waste disposal habits affect the environment in which we live, and our transportation and manufacturing choices affect the very air we breathe. Citizens, legislators, juries, and corporate managers need to make important decisions, affecting many lives, based in part on the findings of science. Everyone needs to be aware of science, the way that scientists work, and how science can be used and misused.

The issues themselves are not our focus, however; instead, they form a context in which to teach basic biology. This is very different from teaching the biology specific to a particular issue, which often leaves students thinking that the biological concept applies only to that case. Some other texts are now using current issues, but our approach is unique because in our text the issues are central to the pedagogy, not "add-ons" presented as case studies or in side-bars, boxes or separate pamphlets. Consequently, we have selected issues that are not only of current importance, but that also lend themselves as vehicles for teaching the major concepts of biology. For example, we use the chapter on the population explosion as a vehicle to teach the biology of reproduction; also osmosis and photosynthesis are covered in a chapter called Plants to Feed the World. Wherever possible, we have presented a concept in more than one part of the book, developing the concept in more than one context. Procaryotic biology and asexual reproduction, for example, are introduced in a chapter called Classifying Nature and then are further developed in a new chapter called New Infectious Threats.

Years ago, a group of educators called the Biological Sciences Curriculum Study developed a list of key concepts in biology. Each of these concepts is covered in our book. In the years since the Biological Sciences Curriculum Study list was developed, biology itself has evolved, so we have added new concepts as they have risen in importance (see our Web site under Resources: Key biological concepts, for both the list of concepts and where they are covered). In this third edition, we have brought the text up-to-date by expanding certain topics and adding new concepts. Three new chapters have been added. Chapter 4, Genomics and Genetic Engineering, covers concepts flowing from the Human Genome Project, including genomics, proteomics and bioinformatics. Chapter 17, New Infectious Threats, discusses the microbiology and ecology of emerging infections and the issue of bioterrorism. Chapter 19, Protecting the Biosphere, covers the continuing evolution of our atmosphere and the effects of acid rain, ozone depletion and global warming.

Other chapters have been reorganized to incorporate new concepts. Evolution and Classification are now covered in separate chapters and we have expanded the discussion of each. Intelligent design is now included in Chapter 5, and Chapter 6 now includes cladistics, comparative genomics, and other taxonomic methods, as well as the three-domain classification system. We have expanded the section on reproductive anatomy and physiology as well as reproductive technologies in Chapter 9, and, obesity as well as cellular respiration is

covered in Chapter 10. Stem cells and cloning are added to Chapter 12 as are the ethical considerations surrounding these controversial topics. A greater emphasis on the diversity of sensory systems in various animals is found in Chapter 13 and the human effects on biomes are detailed in Chapter 18.

The issues have also been adjusted to stay current. Students (especially those not majoring in biology) are more likely to be interested in and develop an understanding of material if it is meaningfully related to issues of concern to them, and these change over time. Infectious diseases are much in the news, and these form the basis for the new Chapter 17. More on obesity and on newly recognized micronutrients have been added to Chapter 10. For issues of continuing interest, such as AIDS or cancer or drugs, we have incorporated the latest statistics as well as the latest biological advances. We recognize that the average undergraduate student is now older than twenty-two; therefore, we have picked issues with a wide age-appeal. We have also attempted to use geographically diverse examples. We know our readers, regardless of where they attend college, are from around the world. By the combination of text and Thought Questions, we encourage students to think beyond themselves, both globally and locally.

In addition to its real-life appeal, the issues approach allows for a more comprehensive view of biology. As a discipline biology has become fragmented to the extent that different perspectives on the same problem, for example, molecular perspectives and environmental perspectives, are often taught in separate courses with no reference to each other. The current understanding of each issue is covered from different perspectives, which often include cellular and molecular perspectives, organismal or individual perspectives, and global or population perspectives, combined as appropriate. Our approach accordingly helps students to experience the interdisciplinary nature of today's biology. Each chapter ends with a section called "Connections to Other Chapters" that further emphasizes this point.

Our approach also examines the intimate connections between biological and social issues. We have chosen to teach 'facts' in a context that emphasizes how they are produced, organized, and used to solve problems. Other books often expose students to the results of biology without gaining understanding of biology as a process of discovery. Instead, we hope to instill in students an understanding and appreciation of this process. To help students, we have presented multiple interpretations or points of view as much as possible. Societal and ethical issues are mentioned wherever relevant, and part of the initial chapter is devoted to an examination of ethical principles. We encourage teachers to set aside time for class discussions to further stimulate student thought, or for students to set up such discussions among themselves informally. With *Biology Today* we aim to stimulate critical thinking and questioning rather than memorization. Thought Questions, suitable for class discussions are provided at the end of each section, and, in this new edition, new Thought Questions have been added.

As Biology Today goes into its third edition, we have continued to benefit from the input of many people in producing a book that remains scientifically accurate and is optimally organized for student understanding. We would like to take this opportunity to thank the many people who reviewed portions of our text and provided us with helpful suggestions. In alphabetical order; they were: Lee Abrahamsen, Bates College; Paul Biersuck, Nassau Community College; Robert Benda, Prince William Sound Community College; Virginia L. Bliss, Framingham State College; Neil Buckley, SUNY Plattsburgh; Craig Coleman, Brigham Young University; Patricia Flower, University of San Diego; Wendy Jean Garrison, University of Mississippi; Denis Goulet, University of Mississippi; Tamar L. Goulet, University of Mississippi; Eric G. Haenni, Hendrix College; Heidi Hawkins, College of Southern Idaho; Joseph Hawkins, College of Southern Idaho; Bernard Hauser, University of Florida; Pat Hauslein, St. Cloud State University; Melissa Ishler, Mansfield University; Eric Jellen, Brigham Young University; Walter Johnson, Merritt College; Charles D. Kay, Wofford College; Nancy Kleckner, Bates College; Michael E. Kovach, Baldwin-Wallace College; Glen Lawson, Bates College; Mary Lehman, Longwood College; Marilyn Mathis, Howard Payne University; Debra Mayers, Southwest Missouri State University; Nancy Minkoff; Neil Minkoff, Partners Community HealthCare; Cheryl McCormick, Bates College; Robert Moss, Wofford College; Valeri Olness, Augustana College; Brian K. Paulson, California University of Pennsylvania; Joseph G. Pelliccia, Bates College; Karen Rasmussen, Maine Cancer Research and Education Foundation; Julio G. Soto, San Jose State University; Carol St. Angelo, Hofstra University; Shawn Stover, Davis & Elkins College; Joyce Tamashiro, University of Puget Sound; Morgan Wilson, University of Mississisppi.

Special thanks to Denise Schanck, who encouraged our work on all three editions. We would also like to thank the staff at Garland Science Publishing, who were most helpful throughout the editing and production of this edition. They include: Emma Catherall, Antonella Collaro, Jackie Harbor, Emma Hunt, Frances Morgan, and Nicola Tidman. Emma Hunt read through the entire book and provided many helpful suggestions for this edition. Nigel Orme drew most of the illustrations. We could never have brought this project to fruition without their help.

Eli C. Minkoff Pamela J. Baker

Biology Today Web Site

Biology Today offers two complementary Web sites that serve as a complete teaching and learning resource—an essential supplement to an issues-oriented biology course.

Where the Web site icon is featured in the book, students are encouraged to go to the *Biology Today* Web site to find additional content. We have indicated the names of these resources in the text itself and each resource is organized by chapter on the Web site. Also organized by chapter are notes and outlines, and a selection of ethical discussion topics. These are completely new to this edition, and designed to invite in-class discussions. In addition, you can find a bibliography, the glossary, a table of biological concepts, a list of useful Web links and sample term papers. Please visit this Web site at:

http://www.garlandscience.com/biologytoday

The Garland Science Classwire Web site offers extensive instructional resources. In addition to containing all materials on the first site, it provides a testbank, and curriculum advice and assistance for those teaching an issues-oriented biology course for the first time. It also contains a sample syllabus, advice about laboratory manuals, and all the answers to the practice questions from the textbook. All the images from the textbook are also available in a downloadable, Web-ready, as well as Power Point-ready, format. Instructors can choose whether they wish to make these resources available to students.

Garland Science Classwire also does much more than offer supplementary teaching resources. It is a flexible and easy to use course management tool that allows instructors to build Web sites for their classes. It offers features such as a syllabus builder, a course calendar, a message center, a course planner, virtual office hours and a resource manager. No programming or technical skills are needed. Garland Science Classwire is offered free of charge to all instructors who adopt Biology Today for their course. Resources for all other Garland text-books are also available.

Please visit Garland Science Classwire at: http://www.classwire.com/garlandscience

About the Book

This third edition of *Biology Today* has undergone considerable revision and reorganization. The basic biology content has been expanded on several topics while current issues and recent science have been both expanded and updated.

Here is an overview of the study aids and features included in this edition. Each chapter opens with a page containing three lists: Issues, Biological Concepts and a Chapter Outline.

Issues: Every chapter raises a number of critical issues, and asks the student to consider a number of important, pivotal questions. These are presented as a bulleted list. Most will be of personal interest to the students regardless of their age. They encourage students to think beyond themselves and to consider their place in the world. Most are issues that students will have encountered in the news. By raising questions, we prompt students to think beyond what they have seen or heard in the news, to question how and by whom "facts" are produced, and to recognize when information is incomplete. These underlying questions are linked with other critical thinking sections within the chapter, thought questions, and the linkage is indicated by the "perspectives" icon.

Biological Concepts: Our main purpose is to cover key biological concepts. This list summarizes the biology that is covered within the chapter. The list is nested so that it can serve as a concept map to guide student's analysis. For example in Chapter 8, one of the entries on the list is: Population ecology (populations, regulating population size). The Biological Concepts headings are taken primarily from the lists of key biological concepts developed by the Biological Sciences Curriculum Study. A complete table of the biological concepts recommended by this group as being key to a basic understanding of biology can be found on our Web site (under Resources: Key biological concepts). This table is fully cross-referenced to indicate where the material is covered in the book. As can be seen by reference to this table, all of the concepts are covered somewhere in the book, and many are covered in more than one context.

Chapter Outline: Chapters begin with an outline listing the first and second level section headings. The first level section headings are sentences stating the main theme of that section. The second level headings are short summary phrases of the main content topic of that section. Thus, these section headings can serve as a study guide for the student to the biological and issue-related content covered within the chapter.

Opening Narrative: The opening narrative scenario immediately introduces the science covered in the chapter by placing it within an interesting and relevant societal context

Thought Questions: Sets of thought questions appear at the end of each chapter section. They are linked to the

chapter opening issues list by the perspectives icon. Although a few thought questions have factual 'right' answers, most do not. Some questions require students to do further reading and many encourage students to think about the limitations of available data or the applications and implications of science. We encourage students with differing viewpoints to discuss these questions among themselves and to ask, "What further information would help us resolve our differences or reach decisions?" These questions can form the basis for discussion either in class or in informal study groups.

Illustrations: Since many of the concepts of biology can be understood and remembered visually, the book is well illustrated with photographs and drawings. Many of the illustrations are new since the second edition and many are visually simplified. The captions to these illustrations often provide another important avenue to understanding. All figures from the book are available on *Art of Biology Today* CD-ROM in two convenient formats: PowerPoint and JPEG. In addition, they are available on our Classwire Web site.

Tables: Throughout the book are numerous tables; these summarize important sections of text or provide specific examples. Several new summary tables are included.

Boxes: Interspersed throughout the text are boxes some of which supplement the text while others review key principles.

Important Vocabulary: Important vocabulary is highlighted in bold type in the text. Each of these terms is defined in the glossary at the end of the book and on our Web site. The terms that are most important conceptually are used in sentences at the end of each chapter in the chapter summary.

Chapter Summary: A bulleted list of the most important ideas from the chapter, with the key vocabulary in bold. This format is useful as a study guide.

Connections to Other Chapters: *Biology Today* aims for an integrated view of biology. The connections section at the end of each chapter helps reinforce this integrated view, with related material presented in different contexts at other places in the text. In addition, "connections" icons placed throughout the book indicate cross-references to different contexts for the same content. Pedagogically this serves to discourage students from compartmentalizing their new knowledge, developing the critical thinking level of generalizing concepts from a variety of contexts.

Practice Questions: Learning biological concepts still requires some memorization of the facts. End-of-chapter practice questions are review questions for students to answer.

Glossary: Each of the bolded terms is defined in an alphabetically arranged glossary at the end of the book and on the *Biology Today* Web site.

Contents

Chapter 1	Biology: Science and Ethics	1
Chapter 2	Genes, Chromosomes, and DNA	33
Chapter 3	Human Genetics	63
Chapter 4	Genetic Engineering and Genomics	95
Chapter 5	Evolution	123
Chapter 6	Classifying Nature	159
Chapter 7	Human Variation	203
Chapter 8	Sociobiology	245
Chapter 9	The Population Explosion	281
Chapter 10	Nutrition and Health	325
Chapter 11	Plants to Feed the World	365
Chapter 12	Stem cells, Cell Division, and Cancer	413
Chapter 13	The Nervous System and Senses	463
Chapter 14	Drugs and Addiction	501
Chapter 15	Mind and Body	539
Chapter 16	HIV and AIDS	573
Chapter 17	New Infectious Threats	611
Chapter 18	Biodiversity and Threatened Habitats	641
Chapter 19	Protecting the Biosphere	679
Glossary		713
Credits		727
Index		731

List of Headings

1 Biology: Science and Ethics	2	The Molecular Basis of Inheritance Further	
Science Develops Theories by Testing		Explains Mendel's Hypotheses	52
Hypotheses	2	DNA and genetic transformation	54
Hypotheses	2	The structure of DNA	56
Hypothesis testing in science	6	DNA replication	58
Theories	10	3 Human Genetics	63
A theory describing the properties of living		What do Genes do?	64
systems	11		04
Scientists Work in Paradigms, Which Can		Gene expression: transcription and translation of genes	64
Help Define Scientific Revolutions	13	Mutations	67
Paradigms and scientific revolutions	13	Some Diseases and Disease Predispositions	07
Molecular genetics as a paradigm in biology	14	Are Inherited	70
The scientific community	15	Identifying genetic causes for traits	71
Scientists Often Consider Ethical Issues	18	Some hereditary diseases associated with	/ 1
Ethics	18	known genes	75
Resolving moral conflicts	19	Genetic Information Can Be Used or	13
Deontological and utilitarian ethics	20	Misused in Various Ways	79
Ethical decision-making	22	Genetic testing and counseling	80
Ethical Questions Arise in Decisions About		Box 3.1 Ethical issues in medical decision-	
the Use of Experimental Subjects	25	making regarding genetic testing	85
Uses of animals	25	Altering individual genotypes	86
The animal rights movement	26	Altering the gene pool of populations	86
Humans as experimental subjects	27	Changing the balance between genetic and	
2 Genes, Chromosomes, and DNA	33	environmental factors	89
Mendel Observed Phenotypes and Formed		4.0 4.7 1.0	
Hypotheses	34	4 Genetic Engineering and Genomics	95
Traits of pea plants	34	Genetic Engineering Changes the Way That Genes Are Transferred	06
Genotype and phenotype	36		96 96
The Chromosomal Basis of Inheritance		Methods of genetic engineering Genetically engineered insulin	98
Explains Mendel's Hypotheses	40	Gene therapy	100
Mitosis	42	Molecular Techniques Have Led to New	100
Meiosis and sexual life cycles	42	Uses for Genetic Information	104
Gene linkage	45	The first DNA marker: restriction-fragment	101
Confirmation of the chromosomal theory	46	length polymorphisms	104
Genes Carried on Sex Chromosomes		Using DNA markers to identify individuals	105
Determine Sex and Sex-linked Traits	47	Using DNA testing in historical controversies	
Sex determination	48	The Human Genome Project Has Changed	0
Sex-linked traits	48	Biology	107
Chromosomal variation	49	Sequencing the human genome	108
Social and ethical issues regarding sex		The human genome draft sequence	110
determination	51		

Xii List of headings

Mapping the human genome	111	Domain Eucarya	178
Some ethical and legal issues		Kingdom Protista	178
Genomics Is a New Field of Biology		Kingdom Plantae	179
Developed as a Result of the Human		Kingdom Mycota	182
Genome Project	115	Kingdom Animalia	183
Bioinformatics	115	Humans Are Products of Evolution	195
Comparative genomics	117	Our primate heritage	195
Functional genomics	118	Early hominids	196
Proteomics	119	The genus <i>Homo</i>	197
5 Evolution	123	7 Human Variation	203
The Darwinian Paradigm Reorganized		There Is Biological Variation Both Within	
Biological Thought	124	and Between Human Populations	204
Pre-Darwinian thought	125	Continuous and discontinuous variation	
The development of Darwin's ideas	126	within populations	204
Descent with modification	128	Variation between populations	206
Natural selection	128	Concepts of race	208
A Great Deal of Evidence Supports		Box 7.1 Is intelligence heritable?	212
Darwin's Ideas	130	The study of human variation	216
Mimicry	130	Population Genetics Can Help us to	
Industrial melanism	131	Understand Human Variation	217
Evidence for branching descent	132	Human blood groups and geography	217
Further evidence from the fossil record	136	Isolated populations and genetic drift	220
Post-Darwinian thought	139	Box 7.2 The Hardy–Weinberg equilibrium	222
Creationists Challenge Evolutionary		Reconstructing the history of human	
Thought	142	populations	224
Bible-based creationism	142	Malaria and Other Diseases Are Agents	
Intelligent design	145	of Natural Selection	226
Reconciling science and religion	149	Malaria	226
Species are Central to the Modern		Sickle-cell anemia and resistance to malaria	a 228
Evolutionary Paradigm	151	Other genetic traits that protect against	
Populations and species	151	malaria	232
How new species originate	152	Population genetics of malaria resistance	234
Life on Earth Originated by Natural		Other diseases as selective factors	234
Processes and Continues to Evolve	154	Natural Selection by Physical Factors	
Evolution as an ongoing process	154	Causes More Population Variation	235
6 Classifying Nature	159	Human variation in physiology and	
Why Classification Is Important	160	physique	236
"All those names"	161	Natural selection, skin color, and disease	
Taxonomic theory	162	resistance	238
Box 6.1 Evolution and classification	102	8 Sociobiology	245
of the land vertebrates	164	Sociobiology Deals With Social Behavior	247
Modern Classifications Recognize a Great	101	Learned and inherited behavior	247
Difference Between Procaryotic and		The paradigm of sociobiology	248
Eucaryotic Cells	167	Research methods in sociobiology	249
Procaryotic cells	168	Box 8.1 The sociobiology paradigm	250
Eucaryotic cells	168	Instincts	251
Endosymbiosis and the evolution of	100	Social Organization Is Adaptive	254
eucaryotes	168	Advantages and disadvantages of social	
Box 6.2 Procaryotic and eucaryotic		groups	254
cells compared	170	Simple forms of social organization	255
Six Kingdoms of Organisms Are Included		Altruism: an evolutionary puzzle	257
in Three Domains	173	The evolution of eusociality	260
Domain and kingdom Archaea	175	Reproductive Strategies Can Alter Fitness	263
Domain and kingdom Eubacteria	175	Asexual versus sexual reproduction	264
Box 6.3 The six kingdoms of organisms	176	Differences between the sexes	265

Mating systems	266	Box 10.2 Obesity and the body mass	
Primate Sociobiology Presents Added		index (BMI)	357
Complexities	268	Starvation	359
Primate social behavior and its development	268	Ecological factors contributing to poor diets	360
Reproductive strategies among primates	272	Effects of poverty and war on health	360
Some examples of human behaviors	274	Micronutrient malnutrition	361
9 The Population Explosion	281	11 Plants to Feed the World	365
Demography Helps to Predict Future	• • •	Plants Capture the Sun's Energy and	
Population Size	283	Make Many Useful Products	366
Population growth	283	Plant products of use to humans	366
Malthus' analysis of population growth	287	Photosynthesis	368
Growth within limits	289	Nitrogen Cycles Through The World's	252
Demographic transition	290	Ecosystems	373
Human Reproductive Biology Helps Us to	206	Nitrogen for plant products	373
Understand Fertility and Infertility	296 296	Mutualistic relationships	375 376
Reproductive anatomy and physiology Impaired fertility	301	Plants living in nitrogen-poor soils Plants Use Specialized Tissues and	370
Assisted reproduction	302	Transport Mechanisms	378
Can We Diminish Population Growth and	302	Tissue specialization in plants	378
its Impact?	305	Water transport in plants	379
Birth control acting before fertilization	306	Crop Yields Can Be Increased by	317
Birth control acting after fertilization	311	Overcoming Various Limiting Factors	383
Cultural and ethical opposition to	511	Fertilizers	383
birth control	313	Soil improvement and conservation	386
Population control movements	317	Irrigation	387
The education of women	317	Hydroponics	387
Controlling population impact	319	Chemical pest control	388
		Integrated pest management	393
10 Nutrition and Health	325	Crop Yields Can Be Increased Further by	
All Humans Have Dietary Requirements	226	Altering Plant Genomes	396
for Good Health Carbohydrates	326 328	Altering plant genomes is not new	397
Box 10.1 How does sugar contribute	320	Altering plant strains through genetic	
to tooth decay?	328	engineering	398
Lipids	330	Use of transgenic plants	402
Proteins	333	Risks and concerns	405
Fiber	335	12 Stem cells, Cell Division and Cancer	413
Vitamins	336	Multicellular Organisms Are Organized	415
Minerals	339	Groups of Cells and Tissues	414
Newly recognized micronutrients	341	Compartmentalization	414
Digestion Processes Food into Chemical		Specialization	415
Substances that the Body Can Absorb		Cooperation and homeostasis	416
and Use for Energy	343	Cell Division is Closely Regulated in	
Chemical and mechanical processes		Normal Cells	417
in digestion	343	The cell cycle	417
The digestive system	343	Regulation of cell division	418
Conversion of macronutrients into cellular		Regulation of gene expression	419
energy	347	Limits to cell division	421
Absorbed Nutrients Circulate Throughout		Development Begins with Undifferentiated	
the Body	352	Cells Called Embryonic Stem Cells	423
Circulatory system	352	Cellular differentiation and tissue	
The heart	353	formation	423
Cardiovascular disease	354	Stem cells	426
Malnutrition Contributes to Poor Health	356	Cloning	429
Eating disorders predominate in the		Ethical and scientific questions	431
industrialized nations	356		

xiii

List of headings

XİV List of headings

Cancer Results When Cell Division Is		Drug safety	512
Uncontrolled	432	Psychoactive Drugs Affect the Mind	515
Properties of cancer cells	432	Opiates and opiate receptors	515
The genetic basis of cancer	433	Marijuana and THC receptors	516
Accumulation of many mutations	435	Nicotine and nicotinic receptors	517
Progression to cancer	436	Amphetamines: agonists of norepinephrine	517
Cancers Have Complex Causes and		LSD: an agonist of serotonin	518
Multiple Risk Factors	438	Caffeine: a general cellular stimulant	518
Inherited predispositions for cancers	440	Alcohol: a CNS depressant	519
Increasing age	441	Most Psychoactive Drugs Are Addictive	521
Viruses	442	Dependence and withdrawal	522
Physical and chemical carcinogens	443	Brain reward centers and drug-seeking	
Dietary factors	446	behaviors	522
Box 12.1 The Ames test	448	Drug tolerance	526
Internal resistance to cancer	448	Drug Abuse Impairs Health	527
Social and economic factors	450	Drug effects on the health of drug users	527
We Can Treat Many Cancers and Lower		Drug effects on embryonic and fetal	
Our Risks for Many More	452	development	530
Surgery, radiation, and chemotherapy	452	Drug abuse: public health and social	
New cancer treatments	453	attitudes	533
Cancer detection and predisposition	455	4838 1 15 1	
Cancer management	456	15 Mind and Body	539
Cancer prevention	457	The Mind and the Body Interact	540
		The Immune System Maintains Health	542
13 The Nervous System and Senses	463	Cells of the immune system and the	5 40
The Nervous System Carries Messages	4.5	lymphatic circulation	542
Throughout the Body	465	Innate immunity	544
The nervous system and neurons	465	Specific immunity	546
Nerve impulses: how messages travel	4.6.6	Immunological memory	549
along neurons	466	Passive immunity	550
Neurotransmitters: how messages travel	471	Harmful immune responses and	A
between neurons	471	immunosuppression	554
Dopamine pathways in the brain:	472	The Neuroendocrine System Consists	
Parkinsonism and Huntington's disease	473	of Neurons and Endocrine Glands	555
Messages are Routed to and from	450	The autonomic nervous system	556
the Brain	476	The stress and relaxation responses	558
Message input: sense organs	476	The Neuroendocrine System Interacts	= < 1
Message processing in the brain	481	with the Immune System	561
Message output: muscle contraction	485	Evidence for one interconnecting network	561
The Brain Stores and Rehearses Messages	488	The placebo effect	564
Learning: storing brain activity	488	Effects of stress on health	564
Memory formation and consolidation	490	Conditioned learning in the immune	
Alzheimer's disease: a lack of acetylcholine	492	system	567
Biological rhythms: time-of-day messages	492	Voluntary control of the immune system	567
Dreams: practice in sending messages	496	16 HIV and AIDS	573
Mental illness and neurotransmitters	407	AIDS Is an Immune System Deficiency	574
in the brain	497	AIDS is caused by a virus called HIV	576
14 Drugs and Addiction	501	Discovery of the connection between	
Drugs Are Chemicals that Alter Biological		HIV and AIDS	576
Processes	502	Establishing cause and effect	579
Drugs and their activity	502	Viruses and HIV	582
Routes of drug entry into the body	503	HIV Infection Progresses in Certain	
Distribution of drugs throughout the body	506	Patterns, Often Leading to AIDS	586
Elimination of drugs from the body	506	Events in infected helper T cells	587
Drug receptors and drug action on cells	509	Progression from HIV infection to AIDS	588
Side-effects and drug interactions	510	Tests for HIV infection	590

A vaccine against AIDS? Drug therapy for people with AIDS	592 594	18 Biodiversity and Threatened Habitats Biodiversity Results from Ecological and	641
Knowledge of HIV Transmission Can		Evolutionary Processes	642
Help You to Avoid AIDS Risks	596	Factors influencing the distribution of	
Risk behaviors	596	biodiversity	643
Box 16.1 Can mosquitoes transmit AIDS?	598	Interdependence of humans and	
Communicability	599	biodiversity	645
Susceptibility versus high risk	600	Extinction Reduces Biodiversity	647
Public health and public policy	603	Types of extinction	648
Worldwide patterns of infection	605	Analyzing patterns of extinction	648
17 New Infectious Threats	611	Species threatened with extinction today	655
	611	Some Entire Habitats Are Threatened	657
Organisms from Many Kingdoms and	612	The tropical rainforest biome	658
Phyla Can Cause Disease	614	Desertification	669
Characteristics of pathogens Evolution of Virulence	615	Valuing habitat	672
	615	10 Protection the Pierrhous	679
Factors governing the spread of pathogens Intentional transmission turns disease	015	19 Protecting the Biosphere	019
into bioterrorism	617	The Biosphere: Land, Water, Atmosphere, and Life	680
Some Diseases that Spread by Direct	017		000
Contact Are Increasing in Prevalence	620	The development of the atmosphere and of life	681
The major sexually transmitted diseases	620	Evidence of early life on Earth	684
Factors increasing prevalence	623	The water cycle	686
Tuberculosis	625	Pollution Threatens Much of Life on Earth	688
Food-borne Disease Patterns Reflect	023	Sources and indicators of pollution	688
Changes in Food Distribution	627	Toxic effects	689
One example: variant Creutzfeld-	021	Pollution prevention	690
Jakob disease	628	Human Activities Are Affecting the	090
Social and economic factors contributing	020	Biosphere	692
to disease outbreaks	629	Aquatic pollution and its biological effects	692
Improvements needed	630	Bioremediation	693
Waterborne Diseases Reflect Changes	030	Air pollution	697
in Lifestyle and Climate	631	Acid rain	698
Cholera	631	Atmospheric ozone	700
Giardiasis	633	CO ₂ and global warming	704
Legionnaire's disease	634	co z and global warming	701
Other waterborne diseases	635		
Ecological Factors Especially Affect	033		
Patterns of Vector-borne Diseases	636		
West Nile virus	636		
Leishmaniasis	638		