HOW TO DO IT

UNIT CONVERSIONS (also called "DIMENSIONAL ANALYSIS")

Many science problems (in chemistry, physics, etc.) require conversions from one type of unit to another.

GENERAL HINT: Always give yourself room to do the work neatly, completely, and legibly.

A. BASIC METHOD FOR NEARLY ALL PROBLEMS:

- 1. Start by writing down what you know, including the units of measurement.
- 2. Multiply by a "UNIT FRACTION":
 - a. The UNIT FRACTION needs to have the <u>same quantity</u> written in the numerator (on top) and in the denominator (on the bottom), but in <u>different units</u>.
 - b. Every unit fraction is therefore equal to ONE, so that you do not change the value when you multiply. See the examples below.
 - c. The unit fraction needs to be arranged so that you can <u>cancel</u> the units that you do not want. <u>If you cannot cancel, try turning the fraction upside down</u>, with the numerator and denominator reversed.
- 3. Treat each unit of measurement like an algebra variable ("x" or "y"), and <u>CANCEL</u> any units that occur in both a numerator and a denominator.
- 4. Sometimes you will need to do steps 2 and 3 multiple times.
- 5. Leave the arithmetic for <u>last</u>, after all the algebra.
- 6. The units of your answer will be <u>whatever units you did not cancel</u>. <u>YOU MUST INCLUDE THE NEW UNITS</u> IN YOUR ANSWER!!

EXAMPLES:

Convert 14 feet into inches Step 1: 14 ft = Step 2: 14 ft ($\frac{12 \text{ in}}{\text{ft}}$) Step 3: 14 ft ($\frac{12 \text{ in}}{\text{ft}}$) Steps 5-6: 14 (12 in) = 168 in.

SOME CONVERSION FACTORS:

1 inch = 2.54 cm 100 cm = 1 meter 1 ft = 12 in 1 mile = 5280 ft 1 hour = 60 min 1 min = 60 sec 1 kg = 1000 g 1 L = 1000 ml

Convert 1.3 miles per hour into feet per second

Step 1: 1.3 mi/hr = Step 2: 1.3 mi (1 hr) (1 min) (5280 ft) hr (60 min) (60 sec) mi Step 3: 1.3 mi (1 hr) (1 min) (5280 ft) hr (60 min) (60 sec) -mi Steps 5-6: 1.3(5280) ft = 1.9 ft/sec 60 (60) sec

NOTICE THIS: "1 hour = 60 min" allows you to multiply by either $(\underline{1 \text{ hour}})$ or $(\underline{60 \text{ min}})$ 60 min 1 hour

NOTE: The answer, 1.9 ft/sec, contains 2 significant figures because the starting value, 1.3 miles per hour, contains 2 significant figures. All the conversions shown on this page are <u>exact</u>, so they do not influence significant figures.

===== TURN OVER FOR MORE =====

B. CONVERSIONS WITHIN THE METRIC SYSTEM (S.I. UNITS):

0		
Giga- means 10 ⁹ , so	1 Gm (gigameter)	$= 10^9$ meter
Mega- means 10 ⁶ , so	1 Mm (megameter)	$= 10^6$ meter
Kilo- means 10^3 , so	1 km (kilometer)	$= 10^3$ meter
Hecta- means 100, so	1 hm (hectameter)	$= 10^2$ meter
Deca- means 10, so	1 da m (decameter)	$= 10^1$ meter
Base unit:	1 meter	$= 10^0$ meter
deci- means .1, so	1 dm (decimeter)	$= 10^{-1}$ meter = .1 m
centi- means .01, so	1 cm (centimeter)	$= 10^{-2}$ meter = .01 m
milli- means .001, so	1 mm (millimeter)	$= 10^{-3}$ meter = .001 m
micro- means 10^{-6} , so	1 μ m (micrometer)	$= 10^{-6}$ meter = .000 001 m
nano- means 10^{-9} , so	1 nm (nanometer)	$= 10^{-9}$ meter
pico- means 10^{-12} , so	1 pm (picometer)	$= 10^{-12}$ meter

NOTES:

The symbol μ (Greek letter "mu") means 10^{-6} ; do not confuse it with m, which means 10^{-3} From "mega" down to "milli", you can remember the first letters of these words:

Kings Have Diamonds, But Diamonds Cost Money

(Kilo, Hecta, Deca, Base unit, Deci, Centi, Milli)

The same prefixes are used for <u>all</u> metric units, e.g.:

1 megagram = 10^6 g, 1 kilogram = 10^3 g, 1 milligram = 10^{-3} g, 1 microgram = 10^{-6} g 1 megaliter = 10^6 L, 1 kiloliter = 10^3 L, 1 milliliter = 10^{-3} L, 1 microliter = 10^{-6} L 1 megawatt = 10^6 w, 1 kilowatt = 10^3 w, 1 milliwatt = 10^{-3} w, 1 microwatt = 10^{-6} w

C. VARIATIONS ON THE GENERAL METHOD:

1. <u>Density</u> is expressed in units like g/cm^3 , so you can use density as a conversion factor. EXAMPLE: If the density of iron is 7.86 g/cm³, then 7.86 g of iron = 1 cm³,

so you can use $(7.86 \text{ g}/1 \text{ cm}^3)$ or $(1 \text{ cm}^3/7.86 \text{ g})$ as conversion factors.

2. <u>Atomic weights</u>, <u>molecular weights</u>, and <u>molar masses</u> can all be used to convert grams into moles or moles into grams.

EXAMPLE: The molar mass (molecular weight) of H₂O is 18.02 g/mol,

so you can use any of these conversion factors for water:

1 mol = 18.02 g or (18.02 g/ mol) or (1 mol/18.02 g)

D. TEMPERATURE IS DIFFERENT.

Celsius to Fahrenheit:	F = 1.8 C + 32	so 100° C is $1.8 (100^{\circ}$ C) + 32 = 212° F
Fahrenheit to Celsius:	C = (F - 32) / 1.8	so 98.6° F is $(98.6 - 32)/1.8 = 37^{\circ}$ C
Celsius to Kelvin:	K = C + 273	so 0° C is 273 K and 100° C is 373 K
Kelvin to Celsius:	K = C + 273	so 298 K is 298 - 273 = 25° C