
Will the Real Bifurcation Diagram Please Stand up!

Chip Ross; Jody Sorensen

The College Mathematics Journal, Vol. 31, No. 1. (Jan., 2000), pp. 2-14.

Stable URL:

http://links.jstor.org/sici?sici=0746-8342%28200001%2931%3A1%3C2%3AWTRBDP%3E2.0.CO%3B2-U

The College Mathematics Journal is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed May 2 12:43:51 2007

http://links.jstor.org/sici?sici=0746-8342%28200001%2931%3A1%3C2%3AWTRBDP%3E2.0.CO%3B2-U
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


Will the Real Bifurcation Diagram Please 
Stand Up! 
Chip Ross and Jody Sorensen 

Chip Ross (sross@bates.edu) is associate professor of 
mathematics at Bates College. He received his Ph.D, from 
the University of Rochester in 1985, and became interested 
in chaotic dynamical systems shortly after arriving at Bates. 
He is interested in finding novel uses of computer graphics 
to illustrate known mathematics and to suggest new 
hypotheses. He enjoys introducing material on chaos and 
fractals to K-12 teachers. He also finds some time to play the 
pipe organ, enjoy his family, and lose far too many tennis 
games to other Bates faculty. 

Jody Sorensen (sorensej@river.it.gvsu.edu) is Assistant 
Professor of Mathematics at Grand Valley State University in 
Allendale, Michigan. While majoring in mathematics at St. 
Olaf College, she participated in the Budapest Semesters in 
Mathematics. She went on to receive her Ph.D. from 
Northwestern University, studying dynamical systems with 
Clark Robinson. She is interested in learning more about the 
history of mathematics and in pursuing undergraduate 
research projects. Hobbies include biking, rollerblading, 
cooking and travel. 

Introduction 

Students can learn inany of the exciting ideas from one-dimensional dynamical 
systems with only a calculus background. These topics can be taught as a separate 
course, or can be added to a calculus or elementary analysis course. When teaching 
the introductory ideas of dynamical systems, one wants students to learn about 
periodic points and to classify them as attracting or repelling. Students should also 
understand parameterized families of functions, and their bifurcations. While team 
teaching a dynamical systeins course, we found it useful to employ what we will 
call the bijz~rcation diagram. This is a picture which shows the locations of both 
attracting a~zdrepelling periodic points for a one-parameter family of functions, and 
how these change as the parameter changes. 

Most texts illustrate bifurcations with a diagram more appropriately nained the 
orbit diagram. This plot shows attracting periodic points and possible locations of 
chaotic behavior. (See Figure 1, the orbit diagram for f,(x) = x' + c. The orbit 
diagram is discussed in detail in [I,Ch. 81, [2, p. 70 ff], [6,Ch. 111, and [8,Ch. 101.) 
The purpose of this paper is to describe a collaborative computer exercise we 
created for our students in an effort to see inore of what the real bifurcation diagram 
for f,(x) = x2+ c looks like. Our students produced the plot in Figure 4, which led 
us to write a computer program which produces the very beautiful Figure 2-the 
real Bifurcation Diagram! 

We begin by introducing notation and suinmarizing the necessaiy background. 
We then describe the in-class experiment we created for our students to find and 
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Figure 1. The Ubiquitous Imposter Figure 2. The Real Thing 
(The Standard Orbit Diagram). (The ( n  I 8) Bifurcation Diagram) 

classify periodic points of f , (x )  = x 2  + c and we discuss the resulting plot. Next we 
describe the computer program which evolved from the in-class experiment, and 
which produces such plots automatically. Finally, we show some ways this com- 
puter program can provide new illustrations of many of the standard results from 
elementary dynamical systems theory. 

Notation and Vocabulary 

We write f ,  to represent a specific member of a one-parameter family of functions. 
Our primary example will be the often-studied family f , (x )  = x' + c, where c E R. 
For any specific function f ,  f ' b e a n s  f composed (not  multiplied) with itself n 
times. For example, f 3( x )  =f (  f (  f ( (  x))).  The orbit of a poi?zt x u?zder the fil?zction 
f is the sequence of real numbers x ,  f ( x ) ,  f 2 ( x ) ,  f 3 ( x ) ,  . . . . The members of this 
sequence are called the itemtes of x .  The main goal of dynamical systems is to 
classify the long-term behavior of orbits. Indeed, the orbit diagram (~igure  1) is a 
plot of the long-term behavior of the orbit of the critical number 0 of f , (x )  = x 2  + c 
at each c value. 

A real number p is a poi~zt of period n for f if f " ( p )  = p .  If n is the smallest 
positive integer for which this equation holds, we say p has prime period n. If in 
particular f ( p )  = p ,  then we refer to p as a fixedpoint of f .  Note that a fixed point 
is automatically a point of period ?z for all positive integers n. If p is a point of 
prime period ?z for f ,  then the n iterates p,  f ( p ) ,  . . . ,f I7-'(p) are called the n-cycle 
to which p belongs. Such a cycle is called an attnacting cycle if the orbits of nearby 
points eventually approach the orbit of p. More precisely, a periodic point p is said 
to be on an attracting n-cycle if there exists some open interval ( a ,  b)  containing p 
such that given any x E ( a ,  b)  and any E > 0, there exists M > 0 such that if m >M, 
If '"'"(x) -f "'"(p)I < E. Similarly the cycle to which p belongs is called a repelling 
cycle if the orbits of nearby points eventually move away from the orbit of p. In 
other words, p is said to be on a repelling n-cycle if there is some interval ( a ,  b)  
containing p such that for any x E ( a ,  b)  with x # p ,  there is some integer m > 0 
such that f '"q x )  tZ ( a ,  b). 
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A basic result in dynamical systems is that for a point p of period n, if 
I ( f ; ' ) l(p)I > 1,  then p lies on a repelling cycle, and if (f ,")l(p) < 1 then p lies on 
an attracting cycle. This result is a lovely application of the Mean Value Theorem 
and can easily be proved in a first semester calculus class. Note that a variety 
of behaviors may occur in the indifferent, or neutral, case when I ( f il)l(x)I = 1; see 
[I, pp. 43-45], 

Student Laboratory Exercise 

Early in our dynamical systems course we had the students search for periodic 
points of f , (x )  = x 2 + C. Specifically, we gave each pair of students a small set of c 
values somewhere in the interval I= [ - 1.4,0.4]and told them to find all periodic 
points of periods n 5 8,and to use slopes to classify the points as attracting or 
repelling. The class's data was then collected on a single sheet of graph paper, with 
the parameter c on the horizontal axis and position x on the vertical axis. The 
students used x's to indicate attracting periodic points and 0's for repelling periodic 
points. This produced what we call the bifurcation diagram for n < 8 for f , (x )  = 

x' + c. At this early point in the course, students had no experience with orbit 
diagrams, bifurcation diagrams or Sarkovskii's theorem [I.p. 1371, and therefore did 
not know what to expect concerning the relative locations of periodic points, or 
how these locations would change as c changed. 

The students used part of our computer program " o r b i t s "  which graphs f , ( x )  
and its iterates in the usual way on the xy-plane. The students found periodic points 
for their particular c values by finding where the respective functions f," crossed 
the line y =x .  The students then used the slopes at such crossings to determine if 
the corresponding periodic cycles were repelling or attracting. 

As a concrete example, consider c = - 1.2. We will illustrate how the students 
found the fixed points and points of prime period 2, and what was plotted on the 
bifurcation diagram as a result. 

Figure 3 shows both the graphs of f _ ,  , ( x )  = x 2- 1.2 and f?,,' ( x )  = ( x 2- 1.2), 
- 1.2, along with the graph of the line y = x .  On this line four points have been 
labeled A, B,C,and D. At points B and D, the graph of f - ,  , crosses the line 

Figure 3. Finding fixed points and points of prime period 2 for f ( x )  =x2- 1.2 .  
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y =x and therefore the x-coordinates of B and D represent the fixed points of 
f - ,  ,. The x-coordinates of B and D are approximately -0.70 and 1.70 respec- 
tively, and since they are the fixed points of J_, , ,  , the points ( - 1.2, -0.70) and 
(- 1.2,1.70) are plotted on the bifi~rcation diagram. Furthermore, the slopes at these 
two points tell us whether these fixed points individually are repelling or attracting. 
By "zooming in" to the graph of f-,,, at B and then D until the graph 1001~s like a 
straight line, the slopes can be numerically approximated to be -1.4 and 3.4 
respectively. Since both of these slopes are greater than 1 in absolute value, both of 
the fixed points of f-,,are repelling, and both would therefore be marked with an 
"onon the hand-drawn bifurcation diagram. 

Next, mre observe that the graph of f? ,,, crosses the line y =x in two ndditiofznl 
points, A and C, so these must represent points of pri~neperiod 2 for ,f_,,,. The 
x-coordinates of A and C are approximately - 1.17 and 0.17, respectively, and by 
zooming in we find the slope of f?, , is about -0.8 at each point. Thus these 
points belong to an attracting 2-cycle, and the points (- 1.2,- 1.17) and ( - 1.2,0.17) 
are each plotted on the bifurcation diagram with an "x".Students continued with 
this process for periods 12 = 3 through 8. ( ~ o t e  that for this function, the points of 
period 1 and 2 could be found exactly using algebra, but that as the value of f z  
increases the work involved quickly becomes unwieldy if not impossible; the 
number of solutions of f S ( x )  =x is potentially 256!) 

A very-much reduced photocopy of the students' hand-drawn bifurcation diagram 
for ?z 5 8 is shown in Figure 4. The reader may check for the points described in the 
preceding paragraphs. As our students first began adding their points to the plot, 
they were disappointed in what appeared to be a pretty scattered collection of 
points. However, as more data were added and the picture neared completion, they 
were surprised and pleased by the result. The finished plot allowed students to 
make several discoveries. 

First, there are no periodic points of any liind for c > 0.25. As the value of c 
decreases to 0.25, a fixed point is "born"; indeed for ,f,,,,(x) = x 2+ 0.25, there is a 
single fixed point xp = 0.5. This particular fixed point is neutral: values less than 0.5 
are attracted and values greater than 0.5 are repelled. The students appropriately 
marked (0.25,0. 5) with both an x and an o. As c decreases through 0.25, the fixed 
point "splits" into a pair of fixed points, with one attracting and one repelling. This 
is a "saddle-node bifurcation." 

Next, the distance between these fixed points increases as c decreases. Near 
c = -0.75, the students saw another major change in the behavior of the fainily ,f,. 
As c drops througl~ -0.75, the attracting fixed point becomes repelling and an 
attracting 2-cycle appears. This is an example of a "period-doubling" bifurcation. 
Another period-doubling bifurcation occurs near c = - 1.25 as the attracting 2-cycle 
becomes repelling and an attracting 4-cycle appears. And again, near c = - 1.36875, 
there is yet another such bifurcation as the attracting 4-cycle becomes repelling and 
an attracting 8-cycle appears. Finally, our students were surprised to discover there 
were no points of priine periods 3, 5, 6, or 7 for any c's in the interval [ - 1.4,0.4]. 

Definitions: Let {,f,) be a one-parameter fainily of functions. We call the picture 
which shomrs the locations (over a selected range of c values) of all attracting and 
repelling points of period K or less the bfz~rcntzo?zdingrnt?~for 72 5 I<. We will also 
refel- to the bij5l~catiotz diagmm.for n I K (read 72 divides K). This picture shows all 
points of period K for .f,. Points in this diagram need not have priine period K, but 
their prime periods will necessarily be divisors of K. Finally, the f z  =K bij'iurcntio?z 
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Figure 4. Hand-drawn Bifurcation Diagram for f,(x) = x2+ c, n 5 8. 

diagram shomrs only those points whose prime periods are exactly I<. With this 
notation, our students produced a plot of the bifurcation diagram for n 5 8 for the 
family f,(x) =x 2+ c, for -1.45 c 5 0.4. Since only points of periods 1, 2, 4 and 8 
were found, this could also be called the bifurcation diagram for n 1 8. 

Such bifurcation diagrams are not widely studied and rarely drawn by computer. 
See [I, p. 641, for a hand-drawn picture of what we would call the bifurcation 
diagram for n 1 2 for .f,(x) =x 2+ c. In [8,p. 3611, and [6,p. 6051, we find sketches 
of parts of the n 14 and n 12 pictures, respectively, for the logistic function 
LC( x) = cx(1 - x). Both texts find algebraic solutions of the equation L;(x) = x as 
an aid to drawing the bifurcation diagrams. Figure 4 in [4,p. 4621, (reproduced in [2, 
p. 78]), contains some of the n 14 and n = 3 picture (and a few points of prime 
period 6). Figures 2 and 7 in [5] show the n I3 and n 14 pictures for the logistic 
and a cubic function, respectively; these were drawn using "backwards iteration" 
akin to the algorithm which produces the orbit diagram. 
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Computer Algorithm 

We decided to modify the computer program used by the students so that the 
computer could draw the various bifurcation diagrams for any one-parameter family 
of functions .f,(x). Here is the algorithm for n 1 K. Choose a (horizontal) interval I 
of values of c, and then a (vertical) interval X of values of x in which to search for 
periodic points for the functions f,. In particular, at each of 481 equally-spaced c 
values in I, search the interval X for solutions of the equations f;(x) =x. If for a 
specific value c = c, a solution xp is found in X, plot the point (c,, xp). The actual 
search for solutions for any given c, is carried out by the computer in the same 
manner as the students found the solutions: the computer searches for crossings of 
the graphs of f: and the line y =x. To do the search for a particular c, the 
computer divides the interval X into 480 subintetvals. The intermediate value 
theorem allows one to conclude that a crossing has occurred at some point xp in 
the subinterval [ nc,,xi+,] whenever f t ( x l )  - x I  is positive and f t ( x i +  l )  -xi+ is 
negative, or vice versa. The point xp at the actual intersection of the two graphs is 
therefore a point of period K (albeit not necessarily prime period I<). The number 
480 was chosen so that each subinterval's upper endpoint corresponds to one of the 
480 pixels in each column on the computer screen. The computer then lights the 
pixel at x, or x ,+ ,  depending on the smaller of If t (  x , )  - x,l and If;(x,+,) - x,, ,I 
under the assumption that xp is closer to x ,  or xi+,, respectively. (This assumption 
is not always valid, but the plot would be off by only a pixel in such a case). 

The program chooses the color of the pixel according to the slope of ft(x,). The 
slope is approximated crudely as ( f t ( x , + , )  -ffl( x ,>)/(xi+,  - x,).  While the points 
appear on screen in color according to their slopes, we have modified the program 
for black and white printouts. We plot a "+"  at (c,, xp) if the slope of f;(xp) is 
greater than 1, a tiny dot (donut hole) if 0 <f t ' ( x p )  I 1, a circle (donut) if 
-1<f:'(xp) I 0 ,  and a " - " whenever f;'(xp) < - 1. Points plotted with " +" or 
" - ,, signs represent points on repelling cycles and those marked with the donut 
holes or donuts show the points on attracting periodic cycles. As a mnemonic 
device, the programmer is attracted to donuts. 

We must mention some details. (1) A potential problem with the algorithm is that 
,fK may cross the line y = x twice (or mol-e) in one of the small subintervals 
[ x , ,  x i + , ]  and the corresponding periodic points will be missed when f t ( x , )  - x ,  
and f t ( x , + , )  - x i + ,  have the same sign. However, this occurs primarily as IZ gets 
larger, and one can always "zoom" in to such a region to help the program out. 
Additionally, one can modify the algorithm to break X into many more than 480 
subdivisions, and therefore miss fewer crossings, at the expense of waiting that 
much longer for the graph to appear. (2) It occasionally happens that one of the 
endpoints x ,  is itself a periodic point, and the program tests for this. ( 3 ) A fancier 
version of our program can do a binary search in any il~terval [ x , ,  x i + , ]  in which a 
crossing is detected, in an effort to get a vely good decimal approximation of the 
periodic point xp. For plotting purposes, this isn't really necessaly for deciding 
which pixel to light (since we're off by at most a pixel only evety now and then). (4) 
The program does not use some internal representation of f composed with itself 
several times, but rather computes values of f "  in straightforward feed-back loops. 
(5) Minor modifications of the algorithm produce the n 5 IZ and n = IZ pictures. For 
the n 5 K pictures, crossings of f "  and y = x are sought for each n 5 K. The 
search is carried out in each subinterval [ x , ,  x,,,] for values of n from 1 to K in 
that order; when a crossing is detected the point found has prime period rz. A 
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beautiful, instructive picture results when the points are colored according to prime 
period; see our examples at the website mentioned below. Alternatively, the slope 
symbols can be based on f "  (instead of fK-the signs may change, but either of 
f l7 or f K  can be used to determine attracting vs. repelling). For the n =K picture, a 
crossing of f K  and y = x "counts" only if there are no crossings of f ' k n d  y =x 
for any n < I<. (6) To produce the figures for this paper, we modified the program 
to draw graphs at a resolution of 2880 by 2880 dots, which takes advantage of our 
printer's ability to produce 360 dots-per-inch, and thus more clearly shows the rich 
structure inherent in bifurcation diagrams. 

Figure 5 shows the computer-drawn version of Figure 4; note the slope symbols 
are based on prime periods as mentioned in item (5) in the preceding paragraph. 

Symbol Key: 

where t11 is the slope 
of fC' at the point x 
of prime period i~ for 
f,(x) = x2+ C. 

Repelling cycles are 
indicated by + and 
- . Attracting cycles 
are indicated by and 

Figure 5. Computer-drawnversion of Figure 4. 

Using the Bifurcation Diagram 

To understand the bifurcation diagram, students must understand many of the 
important concepts of one-dimensional dynamics: one-parameter families of func-
tions, attracting and repelling periodic points, the difference between period and 
prime period, the arithmetic of periodic points, and chaos. Having a program which 
easily draws bifurcation diagrams for various values of n also allows us to illustrate 
in new ways many of the results proved or discussed in standard introductoty 
courses in chaotic dynainical systems. Thus, our bifurcation diagram program is a 
very useful educational tool. We will present five illustrations of how the program 
can be used. 
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Illustration 1: As a basic example, consider the bifurcation diagram for n 1 3 for 
f , ( x )  = x 2  + c (Figure 6). We can see that for a given value of c there are either 
zero ( c  > 0.25), one ( c  = 0.25), two ( - 1.75 < c < 0.25), five ( c  = - 1.75) or eight 
( c  < - 1.75) points of period 3. Let us first consider - 1.75 < c < 0.25. Knowing that 
points of prime period 3 come in sets of three, we can immediately conclude that 
the two points of period 3 for c > - 1.75 are actually fixed points for f,. The 
diagram also shows by the symbols that the smaller of these fixed points is 
attracting for c > -0.75, and that otheiwise both fixed points are repelling. 

Symbol Key: 

+ 112 > 1 . 0 < 171 < 1 

-1 <llL<0 
- t7L < -1, 

where 171 1s the slope 
of f: at the point x 
of (not necessar~ly 
prime) period 3 for 
f,(x) = x2+ C. 

Repelling cycles are 
indicated by + and 
- . Attracting cycles 
are indicated by and 
O .  

Figure 6 .  Periodic points of (not necessarily prime) period 3 for f,( x)= xZ+ c 

As c passes through - 1.75 from right to left, f: undergoes a saddle-node 
bifurcation. At this c-value, the two repelling fixed points persist, and a neutral 
cycle of prime period 3 is born. We can tell that the three new points are a 3-cycle 
rather than three individual fixed points in several ways. For example, we could 
graph . f - ,  ,j(x )  and f? ,7 j  ( x )along with the line y = x, and we would see that the 
third iterate has three more crossings than the first iterate. Or we could draw the 
n = 1 bifurcation diagram, which would show us that there are only two fixed 
points for all c < 0.25. Finally, we could note that since .f,(x) is a polynomial of 
degree 2, the equation f , ( x )  = x has at most two distinct solutions and thus there 
can be at most two fixed points. 

For c < - 1.75 there are eight points of period 3. Two of these are the repelling 
fixed points which persist from c 2 - 1.75.This leaves six points of prime period 3, 
which give us two 3-cycles. We can use the result that the derivatives of f "  are 
equal at each point of an n-cycle [I, p. 481 to determine which points belong to 
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which cycle. By a zoonl (actually just a "stretch" in the c-direction) into the diagram 
one can see that for - 1.768... < c < -1.75 one of the new 3-cycles is attracting. 
For c < -1.768... the points on both 3-cycles are repelling, but for one of the 
cycles (the third, fifth, and seventh cuilres from the top) the derivative of f 3  is 
greater than 1 at each point in the cycle (as indicated by the ' + '  signs) whereas at 
the points in the other cycle, (f 3)1 is less than -1 (as indicated by the ' - ' signs). 

Illustration 2: Care must be taken in analyzing bifurcation diagrams, as surpris- 
ing results often occur. Consider the bifurcation diagram for n 1 2 for g,(x) = c sin(x) 
(Figure 7). 

At both c = - 1 and c = 1 we see what appear to be classic period-doubling 
bifurcations: an attracting fixed point branching into a repelling fixed point and an 
attracting 2-cycle. However, if we attempt to verify this by drawing the bifurca- 
tion diagram for n = 1 (Figure 8), we see that the bifurcation at c = -1 is the 
expected period-doubling bifurcation. However, the bifurcation at c = 1 is a 
bifurcation consisting entirely of fixed points: an attracting fixed point branches into 
two attracting and one repelling fixed points. This is known as a pitchfork 
bifurcation. 

Figure 7. The 1.1 1 2 bifurcation diagram for Figure 8. The n = 1 bifurcation diagram for 
Jt;.(x) = c sin(x), with slope symbols based f,( x )  = c sin( x); slope symbols use fi. 
on  (f:)', 

One lesson learned from this example is that when considering, say, the diagram 
for n 14 for a given function, one should build up to it by first drawing the n = 1 
and n 1 2 pictures. In other words one should draw the bifurcation diagrams for all 
of the divisors of the intended 72, in order to avoid jumping to invalid conclusions. 

llustration 3: As our next illustration, we discuss how the program can be used 
to dramatically illustrate Sarkovskii's Theorein [I, Ch. 111. Recall the Sarkovskii 
ordering of the positive integers: 3D5D7D ... D2.3D2.5D2.7D ... ~ 2 ' . 3 ~ 2 ~ .  
5 D 2'. 7D ... D 23  D 2' D 2 D 1. Sarkovskii's Theorem states, in essence, that for a 

OTHE MATHEMATICAL ASSOCIATION OF AMERICA 10 



coiltinuous function f : R  -+ R, if k precedes I in the Sarkovskii ordering, then 
whenever f has a point of prime period k it is guaranteed to have a point of prime 
period I .  We call use the program to show that if j, has a point of prime period 3 it 
has points of all other (prime) periods. 

We begin by drawing the bifurcation diagram for n = 3 for a family f,,and then 
redraw the diagram for any other n. We notice that for c-values where f, has a 
point of prime period 3 there are indeed points of prime period n. Figure 9 shows 
the bifurcation diagram for ?z 5 5 for fc( x) = x 2+ c. \We see that for all c-values for 
which fc has a cycle of prime period 3 (for c I - 1.75),f, also has points of prime 
periods 1,2, 4, and 5. (1n this picture the periodic points were plotted simply with 
dots instead of the special symbols used to indicate attracting or repelling behavior. 
However inost of the points are on repelling cycles.) A kind of converse to 
Sarkovskii's theorem for fc(x) = x 2+ c is also illustrated here: for example, it is 
possible to find c so that f, has points of prime periods, say, 1, 2, 4, 5 , .  . . , but no 
points of priine period 3. 

Figure 9. An illustration o f  Sarkovsl<ii's theorem. 

Illustration 4: One requiremeilt for a function f to be chaotic on an interval I is 
that periodic points of f are dense in I [I,p. 1191. To say the periodic points are 
dense in I ineans that given ally n E I and E > 0,there is a periodic point p within 
E units of a,that is, Ip - n I < E .  It can be shown that f-,(x) =x 2- 2 is chaotic on 
the iilteival I= [ - 2,2]. \We illustrate the denseness of periodic points in this iilteival 
by drawing the bifurcation diagram for n 5 8 near c = - 2 (~igure 10). Note that no 
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Figure 10. Periodic points of ~f- ,(x)= x2- 2 are dense in [ - 2 , 2 ] .  

matter where we pick a on the vertical interval I= [ - 2,2], some portion of the plot 
crosses right nearby. If we superinlpose the diagranls for additional values of 17. 

they would continue to crowd the interval I, crossing in more and more places, 
filling in the gaps, and helping to illustrate the density of periodic points on this 
interval. 

Illustration 5: Another important result in one-dimensional dynanlics is that 
when c < - 2, there is a Cantor set of points on which j,(x) = x 2+ c exhibits 
chaotic behavior [I,Chs. 7 and 91. For a fixed value of c, this Cantor set is a subset 
of I= [ -p+, p+ 1, where p+ is the larger of the two fixed points of f c .  The Cantor 
set is the set il of all points whose entire orbits lie in I. (1t is easily shown that once 
an iterate of a point leaves I, its orbit will tend to infinity.) A is typically found in 
stages, by letting A, represent the open subset of I consisting of all points in I 
which leave I after one iteration. In other words A, is all points a G I for which 
,f(a) < -p+. Next let A, be defined as all points in I which map to A, after one 
iteration of j., Thus after 2 iterations the points in A, will leave hand hence tend to 
infinity. We define A j  as all points in I which tnap to A,,  and so on. The Cantor 
set A is everything that is left in I after all of the A i  are removed. Note that all 
periodic points bounce around in the intetval I forever, and thus form a subset of 
A .  Figure 11 shows the bif~~rcation diagram for j,( x) =x 2+ c for 17 IS. By plotting 
the (repelling) periodic points, this image clearly shows us where the set A lies for 
a given c < -2: the open intel~~als are labeled. We note that all of the A,,  A,, A, 
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Figure 11. For c < 2 ,  the periodic points of fc(..c) = ..c2+ c lie in a Cantor set 

periodic points for c < - 2 are repelling, and would not appear on the standard 
orbit diagram. These Cantor sets are shown througl~ a different technique in the 
recent article [ 3 ] .  

Remark: As mentioned above, our prograrn plots the bifurcation diagram in color. 
Colors are used at points on the diagram to indicate whether the various points lie 
on attracting or repelling cycles. We invite the reader to view the colored diagrams 
at our website h t t p  : / /www2 .gvsu .edu/-sorensej/ c m j  .html.A copy of 
our program is also available there for downloading; see the website for informa- 
tion. 

Conclusion: We have seen how a student laboratory exercise led to an interest- 
ing method of using the computer to draw bifurcation diagrams. These diagrams, 
which show the locations of both attracting and repelling points for a one-parameter 
family of functions, allow us to illustrate in novel ways well known facts from 
elernentaiy dynalnical systems theory. The bifurcation diagram nicely coinpleinents 
the more coininonly discussed orbit diagrain. Together the two diagrams show 
attracting and repelling periodic orbits, along with possible locations of chaotic 
behavior. When coinbitled they present the whole picture of the dynalnical behav- 
ior for a one-parameter family of f~inctions. We will further explore this connection 
in [ 7 ] .  
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The Loneliness of the Long-Distance Mathematics Teacher 

Kathleen Braden noticed the following in Angelu's Ashes, by 
Frank McCourt (Scribners's, 1996, p. 153): 

Next day Brendan raises his hand. Dotty gives him the little smile. 
Sir, what use is Euclid and all the lines when the Germans are 
bombing everything that stands? 

The little smile is gone. Ah, Brendan. Ah, Quigley. Oh, boys, oh, 
boys. 

He lays his stick on the desk and stands on the platform with his 
eyes closed. What use is Euclid? he says. Use? Without Euclid the 
Messerschmitt could never have taken to the sky. Without Euclid 
the Spitfire could not dart from cloud to cloud. Euclid brings 11s 
grace and beauty and elegance. What does he bring us, boys? 

Grace, sir. 
And? 
Beauty, sir. 
And? 
Elegance, sir. 
Euclid is cornplcte in hinlself and divine in ~ipplication. Do you 

understand that, boys? 
We do, sir. 
I doubt it boys, I doubt i t .  To love Euclid is to be alone in this 

world. He opens his eyes and sighs and you can see the eyes are a 
little watery. 
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