1. Fill in the appropriate boxes. Assume all reactions are quenched and that both enantiomers (or diastereomers) are formed during the reaction. (5 pts ea)

(a)

Cl₂ → OsO₄ → any alkene →

(b)

9-BBN; NaOH, H₂O₂ → H₂SO₄, H₂O →
2. The mass spectra of compounds containing bromine have a distinctive pattern, since the natural abundances of 79Br and 81Br are almost equal and 80Br is zero. Sketch the mass spectrum for CH$_3$Br. (6 pts)

3. Circle the isomer below that corresponds to the 13C spectrum. (6 pts)
4. Experimental observations show that when cyclopentadiene and furan are mixed together at room temperature, the only product formed is the endo Diels-Alder product (cyclopentadiene acts as the diene, while furan is the dienophile). However, when they are mixed at elevated temperatures and extended reaction times, the exo isomer is formed.

(a) Draw the endo and the exo products of this reaction. Label each of them as either the kinetic product or the thermodynamic product. (8 pts)

(b) Sketch a reaction coordinate for the reaction of cyclopentadiene with furan for the formation of both the endo and the exo products. Label all transition states and products. (6 pts)

(c) What would be the result of heating a mixture of endo and exo products to 80 °C? (5 pts)
5. Spiroketalts are common structural motifs found in many natural products. One method for their synthesis is shown below. Propose a mechanism for this transformation. (8 pts)

![Spiroketals synthesis](image)

6. Sketch all of the bonding π molecular orbitals if acrylonitrile (below). (9 pts)

![Acrylonitrile bonding orbitals](image)
7. Using the starting materials given and any other inorganic reagent, propose a synthesis of the target molecule. (12 pts)

\[
\text{and } \quad \text{Br}^{-} \quad \text{and} \quad + \text{enantiomer}
\]