A Sample Beamer Presentation

Eric Towne

Bates College

January 6, 2012
1. What Can Happen at a Critical Point?

2. What Does $g'(c) > 0$ Mean?

3. Further Work
The Usual Suspects

You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have
The Usual Suspects

You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have
- a local maximum, or
The Usual Suspects

You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have

- a local maximum, or
- a local minimum, or
The Usual Suspects

You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have

- a local maximum, or
- a local minimum, or
- an inflection point.
You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have

- a local maximum, or
- a local minimum, or
- an inflection point.

If that’s what you think, then you are ...
The Usual Suspects

You might think that if \(f'(0) = 0 \) (and \(f \) is not a constant function) then at \(x = 0 \), \(f \) must have

- a local maximum, or
- a local minimum, or
- an inflection point.

If that’s what you think, then you are ... (notice that we’re giving you time to reconsider!) ...
The Usual Suspects

You might think that if $f'(0) = 0$ (and f is not a constant function) then at $x = 0$, f must have

- a local maximum, or
- a local minimum, or
- an inflection point.

If that's what you think, then you are ... (notice that we’re giving you time to reconsider!) ... wrong.
A Counterexample

Consider the function

\[f(x) = \begin{cases}
 x^2 \sin(1/x), & \text{if } x \neq 0 \\
 0, & \text{if } x = 0
\end{cases} \]

Let’s see what \(f'(0) \) is.
Finding $f'(0)$

By the definition of derivative,

$$f'(0) =$$
Finding \(f'(0) \)

By the definition of derivative,

\[
f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}
\]
By the definition of derivative,

\[f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \]

\[= \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h} \]

Since \(-h \leq h \sin(1/h) \leq h\) and \(\lim_{h \to 0} (-h) = \lim_{h \to 0} (h) = 0\), the Squeeze Theorem says \(f'(0) = 0\).
By the definition of derivative,

\[
f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h} = \lim_{h \to 0} h \sin(1/h)
\]

Since \(-h \leq h \sin(1/h) \leq h\)

Finding \(f'(0)\)
Finding $f'(0)$

By the definition of derivative,

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h}$$

$$= \lim_{h \to 0} h \sin(1/h)$$

Since $-h \leq h \sin(1/h) \leq h$ and $\lim_{h \to 0} (-h) = \lim_{h \to 0} (h) = 0$,

the Squeeze Theorem says $f'(0) = 0$.

By the definition of derivative,

\[f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} \]

\[= \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h} \]

\[= \lim_{h \to 0} h \sin(1/h) \]

Since \(-h \leq h \sin(1/h) \leq h\) and \(\lim_{h \to 0} (-h) = \lim_{h \to 0} (h) = 0\), the Squeeze Theorem says

\[f'(0) = 0 \]
Finding $f'(0)$

By the definition of derivative,

$$f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h}$$

$$= \lim_{h \to 0} h \sin(1/h)$$

Since $-h \leq h \sin(1/h) \leq h$ and $\lim_{h \to 0} (-h) = \lim_{h \to 0} (h) = 0$, the Squeeze Theorem says $f'(0) = 0$.
What Really Happens at \(x = 0 \)?

But \(f(x) \) oscillates wildly as \(x \to 0 \), so even though \(f'(0) = 0 \), \(f \) has neither max, min, nor inflection point at \(x = 0 \).
What Really Happens at $x = 0$?

But $f(x)$ oscillates wildly as $x \to 0$, so even though $f'(0) = 0$, f has neither max, min, nor inflection point at $x = 0$.

$y = f(x), y = x^2, y = -x^2$
1 What Can Happen at a Critical Point?

2 What Does $g'(c) > 0$ Mean?

3 Further Work
It’s natural to think that if $g'(c) > 0$ then g must be “increasing at $x = c$.”
It’s natural to think that if $g'(c) > 0$ then g must be “increasing at $x = c$.”

But what does “increasing at $x = c$” really mean?
How to Define “Increasing at a Point”?

It’s natural to think that if $g'(c) > 0$ then g must be “increasing at $x = c$.”

But what does “increasing at $x = c$” really mean?

A Reasonable Definition

A function g is *increasing at* $x = c$ if there is an open interval $I = (c - \delta, c + \delta)$ such that
It’s natural to think that if $g'(c) > 0$ then g must be “increasing at $x = c$.”

But what does “increasing at $x = c$” really mean?

A Reasonable Definition

A function g is *increasing at $x = c$* if there is an open interval $I = (c - \delta, c + \delta)$ such that if $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow g(x_1) < g(x_2)$.
How to Define “Increasing at a Point”?

It’s natural to think that if \(g'(c) > 0 \) then \(g \) must be “increasing at \(x = c \).”

But what does “increasing at \(x = c \)” really mean?

A Reasonable Definition

A function \(g \) is *increasing at* \(x = c \) if there is an open interval \(I = (c - \delta, c + \delta) \) such that if \(x_1, x_2 \in I \), then \(x_1 < x_2 \Rightarrow g(x_1) < g(x_2) \).
How to Define “Increasing at a Point”?

It’s natural to think that if $g'(c) > 0$ then g must be “increasing at $x = c$.” But what does “increasing at $x = c$” really mean?

A Reasonable Definition

A function g is increasing at $x = c$ if there is an open interval $I = (c - \delta, c + \delta)$ such that if $x_1, x_2 \in I$, then $x_1 < x_2 \Rightarrow g(x_1) < g(x_2)$.
Our Function with a Slight Twist

Let’s modify our function to

\[g(x) = \begin{cases}
0.5x + x^2 \sin(1/x), & \text{if } x \neq 0 \\
0, & \text{if } x = 0
\end{cases} \]

Using the definition of derivative as before, we will find that \(g'(0) = 0.5 \).
However, $g(x)$ still oscillates enough as $x \to 0$ that there is no open interval containing $x = 0$ that satisfies our definition of g increasing at $x = 0$ even though $g'(0) > 0$.
What Really Happens at $x = 0$?

However, $g(x)$ still oscillates enough as $x \to 0$ that there is no open interval containing $x = 0$ that satisfies our definition of g increasing at $x = 0$ even though $g'(0) > 0$.

\[y = g(x), \quad y = x^2 + 0.5x, \quad y = x^2 - 0.5x \]
1. What Can Happen at a Critical Point?

2. What Does $g'(c) > 0$ Mean?

3. Further Work
The function $f(x)$ introduced earlier has other interesting properties, one of which is the fact that while $f'(0)$ exists, $f'(x)$ is discontinuous at $x = 0$.

We leave it to you to work this out for yourself and to explore this interesting function further.

Thank you for your attention today.