Review for Test 2:

- Chapter 2: §2.2-2.3
 §2.2 “Inverse of a Matrix”
 - Be able to find an inverse of a matrix using the algorithm in this section.
 - Know the properties in Theorem 5, Theorem 6, and Theorem 7 for inverses.

§2.3 “Characterizations of Invertible Matrices”
 - Be familiar with the conditions in the IMT and the implications when answering short answer questions like 11-32 in §2.3.

- Chapter 4: 4.1-4.6
 §4.1: “Vector Spaces and Subspaces”
 - Be familiar with the axioms of a vector space.
 - Be able to show whether or not a subset is a subspace (three requirements).
 - Be able to use and prove the fact that the the span of a subset of vectors in a vector space V is always a subspace of V.

§4.2: “Null Spaces, Column Spaces, and Linear Transformations”
 - Know the definition of the null space, understand Theorem 2, and be able to explicitly find the \text{Nul}(A) and determine if a vector \vec{v} is in the \text{Nul}(A).
 - Know the definition of the column space, understand Theorem 3 and the blue box on page 230, and be able to determine if a vector \vec{v} is in the \text{Col}(A).
 - Understand the terminology of kernel and range when referring to a linear transformation, T.

§4.3: “Linearly Independent Sets; Bases”
 - Know the definition of a basis.
 - Be able to find bases for \text{Nul}(A) and \text{Col}(A).

§4.4: “Coordinate Systems”
 - Know the definition of a coordinate vector.
 - Given a coordinate vector and a basis, be able to find the vector in standard coordinates.
 - Given a vector in standard coordinates and an ordered basis, be able to determine the coordinate vector.
 - Understand the change of coordinates matrix.
 - Be able to use Theorem 8 to determine if two spaces are isomorphic or if a subset of a vector space V is a basis or not (see Ex. 6 and Ex. 7 on p.251-252).

§4.5: “Dimension of a Vector Space”
 - Understand Theorem 9 and Theorem 10.
 - Know the definition of dimension of a vector space.
 - Understand Theorem 11 and Theorem 12.
 - Be able to find the dimension of \text{Nul}(A), \text{Col}(A), or any subspace.
 - Understand the blue box on p.260
§4.6: “Rank”
- Know the definition of row space and be able to determine Row(A).
- Know the definition of rank and be able to determine rank(A).
- Know the rank theorem (Theorem 14).
- Understand the additions to the IMT from the rank(A).

- Chapter 3: 3.1 §3.1: “Introduction to Determinants”
 - Know how to find the determinant of a matrix using cofactor expansion.
 - Know that if det(A) = 0, then A is singular (A is NOT invertible).
 - Know that det(AB) = det(A)det(B).

- Chapter 5: 5.1-5.3 §5.1: “Eigenvectors and Eigenvalues”
 - Know the definition of an eigenvalue, an eigenvector, and an eigenspace.
 - Be able to check if \(\vec{v} \) is an eigenvector of A (see if there is a \(\lambda \) such that \(A\vec{x} = \lambda \vec{x} \)).
 - Be able to check if \(\lambda \) is an eigenvalue of A (see if \((A - \lambda I)\vec{x} = \vec{0} \) has a solution, \(\vec{x} \)).
 - Be able to use Theorem 2.

§5.2: “The Characteristic Equation”
- Be able to find the characteristic polynomial and the characteristic equation for a matrix A.
- Be able to solve the characteristic equation and find all eigenvalues of A (solve \(\det(A - \lambda I) = 0 \)).
- Know the definition of Similar Matrices and understand Theorem 3.

§5.3: “Diagonalization”
- Know the definition of a diagonalizable matrix (A is similar to a diagonal matrix D).
- Know Theorem 5.
- Be able to find the general form of \(A^k \) if A is diagonalizable.
- Know the 4 steps on pages 321-322 to diagonalize a matrix (when possible).
- Know when a matrix will or will not be diagonalizable by using a multiplicity/dimension argument. See Theorem 7.