Lesson Three: Proclamations and Proofs

Definition. An integer m is **even** if $m = 2j$ where j is an integer.

Theorem 1. The sum of any two even integers is an even integer.

Proof. Suppose m and n are even integers.
 By the definition of even, $m = 2j$ and $n = 2k$ where j and k are integers.
 Therefore, $m + n = 2j + 2k = 2(j + k)$.
 Since the integers are closed under addition, $j + k$ is also an integer.
 So, $m + n$ is twice another integer $(j + k)$, meaning $m + n$ is even, as desired. □

Theorem 2. The equation $x^n + y^n = z^n$ has no non-zero integer solutions for $n > 2$.

Proof. I have a marvellous proof of this, but the page is too small to contain it. □

Theorem 3. The number 8675309 is prime.

Proof. Just ask Jenny. □

Definition. A mathematician is a device for turning coffee into theorems. [attributed to Paul Erdős]

Note. Begin laughing now.

Exercise Three: Proclamations and Proofs

Theorem 1. The product of any two even integers is an even integer.

Proof. [Try this on your own before looking at the solutions.] □

Definition. An integer k is **odd** if $k = 2j + 1$ where j is an integer.

Theorem 2. The sum of any two odd integers is an even integer.

Proof. [Try this on your own before looking at the solutions.] □

Theorem 3. Every even integer greater than two is the sum of two primes.

Proof. [Let us know right away if you find a proof to this one!] □