Mathematics 105
Sections A, B, C, and D
Final Exam
Dec 13, 2011

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

- You must show all work to receive credit.
- No electronic devices other than calculators are permitted.
- Give exact answers (such as \ln 5 or \(e^2\)) unless requested otherwise.
- Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers.
- Correct answers without proper justification or those that use unapproved short-cut methods will not receive full credit.
- If you use a calculator to help find an answer, you must write down enough information on what you have done to make your method understandable.
1. Consider the function:

\[g(x) = \begin{cases}
 x^3 - 1 & \text{if } x \geq 0 \\
 1 - x^3 & \text{if } x < 0
\end{cases} \]

(a) What is \(g'(x) \)?

\[g'(x) = \begin{cases}
 3x^2 & \text{if } x > 0 \\
 -3x^2 & \text{if } x < 0
\end{cases} \]

* See note in (g) below for why \(g'(0) \) is undefined

(b) Evaluate \(\lim_{x \to 0^+} g(x) \).

\[\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} x^3 - 1 = -1 \]

(c) Evaluate \(\lim_{x \to 0^-} g(x) \).

\[\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} 1 - x^3 = 1 \]

(d) Is \(g(x) \) continuous at \(x = 0 \)?

No, since \(\lim_{x \to 0^+} g(x) \neq \lim_{x \to 0^-} g(x) \)

Thus, \(\lim_{x \to 0} g(x) \) DNE \(\Rightarrow g \) is not continuous at \(x = 0 \)

(e) Evaluate \(\lim_{x \to 0^+} g'(x) \).

\[\lim_{x \to 0^+} g'(x) = \lim_{x \to 0^+} 3x^2 = 0 \]

(f) Evaluate \(\lim_{x \to 0^-} g'(x) \).

\[\lim_{x \to 0^-} g'(x) = \lim_{x \to 0^-} -3x^2 = 0 \]

(g) In light of the above, check your answer to part (a). Does \(g'(0) \) exist? Why or why not?

Despite fact that \(\lim_{x \to 0^+} g'(x) = \lim_{x \to 0^-} g'(x) = 0 \), \(g'(0) \) does not exist since \(g \) is not continuous at \(x = 0 \) so \(g'(0) \) DNE

\[g \text{ has a hole at } x = 0 \]
2. Evaluate \(\int_{-1}^{1} \left(t^2 + \frac{1}{1+t^2} \right) dt \).

\[
\int_{-1}^{1} \left(t^2 + \frac{1}{1+t^2} \right) dt = \left[\frac{t^3}{3} + \arctan t \right]_{-1}^{1}
= \left(\frac{1}{3} + \arctan 1 \right) - \left(-\frac{1}{3} + \arctan (-1) \right)
= \frac{2}{3} + \frac{\pi}{4} + \frac{\pi}{4} = \frac{4 + 3\pi}{6}
\]

3. Find the solution to the initial value problem where \(y' = x^2 + 2x \ln 2 \) with \(y(0) = 2 \).

Antidifferentiate to find general solution:

\[
y = \frac{x^3}{3} + 2^x + C
\]

Use initial value \(y(0) = 2 \) to find \(C \):

\[
2 = \frac{0^3}{3} + 2^0 + C \quad \Rightarrow \quad 2 = 1 + C \quad \Rightarrow \quad C = 1
\]

Solution to IVP:

\[
y = \frac{x^3}{3} + 2^x + 1
\]
4. Consider

\[f(x) = \begin{cases} \quad a + bx^2 & \text{if } x < 2 \\ -x^2 + 10x - 4 & \text{if } x \geq 2 \end{cases} \]

(a) What condition(s) must be placed on the constants \(a\) and \(b\) in order for \(f\) to be continuous on \((-\infty, \infty)\)?

Since \(a+bx^2\) and \(-x^2+10x-4\) are polynomials, they are continuous for all real values of \(x\). Thus, the only possible point of discontinuity for \(f(x)\) is at \(x=2\), where the piecewise function changes definition on its domain.

So we need \(\lim_{x \to 2^-} f(x) = f(2)\)

\[
\begin{align*}
\lim_{x \to 2^-} f(x) &= \lim_{x \to 2^-} a + bx^2 = a + 4b \\
\lim_{x \to 2^+} f(x) &= \lim_{x \to 2^+} -x^2 + 10x - 4 = -4 + 20 - 4 = 12
\end{align*}
\]

for continuity we require \(a + 4b = 12\)

\[f(x) = -2x + 10 \]

\(\therefore f\) is continuous if \(a + 4b = 12\)

(b) For what values of the constants \(a\) and \(b\) will \(f\) be differentiable on \((-\infty, \infty)\)?

\[
\begin{cases}
2bx & \text{if } x < 2 \\
-2x + 10 & \text{if } x \geq 2
\end{cases}
\]

\[
\begin{align*}
\lim_{x \to 2^-} f'(x) &= \lim_{x \to 2^-} 2bx = 4b \\
\lim_{x \to 2^+} f'(x) &= \lim_{x \to 2^+} -2x + 10 = 6
\end{align*}
\]

Need left \& right-hand limits to be equal in order for \(\lim_{x \to 2} f'(x)\) to exist

\[\text{we require } 4b = 6 \implies b = \frac{3}{2} \]

\(f\) continuous at \(x = 2\) requires \(a + 4b = 12\)

\(\implies a + 4 \left(\frac{3}{2}\right) = 12\)

\(\implies a = 6\)

\[f = \begin{cases} 6 & \text{if } x < 2 \\ -2x + 10 & \text{if } x \geq 2 \end{cases} \]

Note \(a = 6, b = \frac{3}{2}\) then \(f(x) = \begin{cases} 6 + \frac{3}{2}x^2 & \text{if } x < 2 \\ -x^2 + 10x - 4 & \text{if } x \geq 2 \end{cases} \)

\[f'(x) = \begin{cases} 3x & \text{if } x < 2 \\ -2x + 10 & \text{if } x \geq 2 \end{cases} \]

Where \(f\) is continuous on \((-\infty, -2)\) and \(f\) is differentiable on \((-\infty, 0)\)

\(\therefore \lim_{x \to 2^-} f(x) = 12 = f(2)\)

\(\therefore \lim_{x \to 2^+} f'(x) = 6 = f'(2)\)
5. A clock on the wall reads 10:00. The hour hand is \(h = 5 \) ft long and the minute hand is \(m = 7 \) ft long. The distance between to two tips is \(z \). The angle between the two hands is \(\theta \).

(a) The law of cosines states \(h^2 + m^2 - 2hm \cos \theta = z^2 \). Find \(z \) for this problem. [Hint: start by finding \(\theta \) when the clock reads 10:00.]

\[
\begin{align*}
\text{Note: at 10:00, } \theta &= 2 \left(\frac{\pi}{12} \right) = \frac{\pi}{6} \\
5^2 + 7^2 - 2(5)(7)\cos \left(\frac{\pi}{6} \right) &= z^2 \\
25 + 49 - 35 &= z^2 \\
39 &= z^2 \\
z &= \sqrt{39} \approx 6.24 \text{ ft}
\end{align*}
\]

(b) Explain why \(\frac{d\theta}{dt} = \frac{11\pi}{6} \) radians per hour.

- \(h \) moves \(2\pi \) radians per hour
- \(m \) moves \(\frac{2\pi}{12} \) radians per hour

\[
\frac{d\theta}{dt} = 2\pi - \frac{\pi}{12} = \frac{23\pi}{12} = \frac{11\pi}{6} \text{ radians per hour}
\]

(c) Find \(\frac{dz}{dt} \).

Implicity differentiate \(25 + 49 - 70 \cos \theta = z^2 \) with respect to \(t \)

\[
\begin{align*}
+70 \sin \theta \frac{d\theta}{dt} &= 2z \frac{dz}{dt} \\
70 \sin \left(\frac{\pi}{6} \right) \cdot \frac{4\pi}{6} &= 2 \sqrt{39} \frac{dz}{dt} \\
\frac{dz}{dt} &= \frac{70 \sqrt{39} \pi^2}{12} \cdot \frac{1}{2.59} \approx 27.95 \text{ ft/hr}
\end{align*}
\]
6. Consider \(f(x) = x^3 - x \), Newton’s method generates successive estimates in finding a root of the equation \(f(x) = 0 \) using the formula \(x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \) based upon an initial guess \(x_0 \).

(a) Starting with an initial guess of \(x_0 = \frac{1}{\sqrt{5}} \), use Newton’s method to generate the first four estimates, \(x_1, x_2, x_3, \) and \(x_4 \), to a root of \(x^3 - x = 0 \).

\[
\frac{f'}{f}(x) = 3x^2 - 1
\]

\[
x_{k+1} = x_k - \frac{x_k^3 - x_k}{3x_k^2 - 1} = \frac{2x_k^3}{3x_k^2 - 1}
\]

\[
x_0 = \frac{1}{\sqrt{5}}
\]

\[
x_1 = \frac{2(3x_0^2)}{3(3x_0^2 - 1)} = \frac{2}{3 \sqrt{5}} - \frac{\sqrt{5}}{2} = \frac{1}{\sqrt{5}}
\]

\[
x_2 = \frac{2(3x_1^2)}{3(3x_1^2 - 1)} = \frac{2}{3 \sqrt{5}} - \frac{\sqrt{5}}{2} = \frac{1}{\sqrt{5}}
\]

\[
x_3 = \frac{2(3x_2^2)}{3(3x_2^2 - 1)} = \frac{2}{3 \sqrt{5}} - \frac{\sqrt{5}}{2} = \frac{1}{\sqrt{5}}
\]

\[
x_4 = \frac{2(3x_3^2)}{3(3x_3^2 - 1)} = \frac{2}{3 \sqrt{5}} - \frac{\sqrt{5}}{2} = \frac{1}{\sqrt{5}}
\]

(b) Annotate the graph below to help demonstrate the geometric idea behind Newton’s method for finding the estimates in part (a). You do not need to give a complete derivation of the formula, but you must informally describe how the method generates estimates.

The x-intercept for line tangent to \(f \) at \((x_k, f(x_k)) \) is \(x_k \).

The x-intercept for line tangent to \(f \) at \((x_k, f(x_k)) \) is \(x_k \), and so on...

Thus creates the cycle: \(x_0 = \frac{1}{\sqrt{5}} \rightarrow x_1 = \frac{1}{\sqrt{5}} \rightarrow x_2 = \frac{1}{\sqrt{5}} \rightarrow x_3 = \frac{1}{\sqrt{5}} \rightarrow x_4 = \frac{1}{\sqrt{5}} \rightarrow ... \)
7. Consider two functions,

\[f(x) = \int_{-3}^{x} \sin \sqrt{t} dt \quad \text{and} \quad g(x) = \int_{3}^{x} \sin \sqrt{t} dt \]

(a) What is the derivative of \(g(x) \)?

Since \(-3 \) is not in the domain of \(\sin \sqrt{t} \), it follows from the Fundamental Theorem that

\[\frac{d}{dx} \int_{-3}^{x} \sin \sqrt{t} dt = \sin \sqrt{x} \]

(b) What is the derivative of \(f(x) \)?

\[\frac{d}{dx} \int_{3}^{x} \sin \sqrt{t} dt \] does not exist since \(-3\) is not in the domain of \(\sin \sqrt{t} \)

(c) Why do your two answers differ?

Since \(\sin \sqrt{x} \) does not exist for \(x < 0 \)

8. Suppose \(f(0) = 4, \ f'(0) = 3, \ g(0) = -7, \ g(4) = 1, \) and \(g'(0) = \frac{\pi}{2} \). Compute the following or explain why an answer does not exist.

(a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

\[h'(x) = f'(x)g(x) + f(x)g'(x) \]

\[\Rightarrow h'(0) = f'(0)g(0) + f(0)g'(0) = 3(-7) + 4(\frac{\pi}{2}) = -21 + 2\pi \]

(b) \(k'(0) \) if \(k(x) = \frac{f(x)}{g(x)} \)

\[k'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \]

\[k'(0) = \frac{f'(0)g(0) - f(0)g'(0)}{g(0)^2} = \frac{2(-7) - 4(\frac{\pi}{2})}{(-7)^2} = -21 - 2\pi \]

\[\frac{2}{49} \]

(c) \(v'(0) \) if \(v(x) = e^{g(f(x))} \)

\[v(x) = e^{g(f(x))} \cdot g'(f(x)) \cdot f'(x) \]

\[v'(0) = e^{g(f(0))} \cdot g'(f(0)) \cdot f'(0) = e^{g(4)} \cdot g'(4) \cdot 3 = 3e \cdot g'(4) \]
9. A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 800 meters of wire at your disposal, what is the largest area you can enclose?

Maximize Area: \(A = xy \)

Constraint Equation: \(P = 800 = 2x + y \) \(\Rightarrow y = 800 - 2x \)

\(A = xy = x(800 - 2x) = 800x - 2x^2 \)

\(A'(x) = 800 - 4x \), so \(A'(x) = 0 \) when \(800 - 4x = 0 \) \(x = 200 \)

2nd Derivative Test: \(A''(x) = -4 < 0 \) \(\Rightarrow A''(200) = -4 < 0 \) \(\Rightarrow A \) has max at \(x = 200 \)

If \(x = 200 \), \(y = 800 - 2(200) = 400 \)

Therefore, maximum area is \(A = xy = 200 \cdot 400 = 80,000 \text{ ft}^2 \)

10. Consider the following limit

\[\lim_{x \to \infty} \frac{\sqrt{x + 4}}{\sqrt{4x + 1}} \]

(a) What happens if you apply L'Hôpital's Rule? Be sure to apply the rule more than once.

\[\lim_{x \to \infty} \frac{\sqrt{x + 4}}{\sqrt{4x + 1}} = \lim_{x \to \infty} \frac{\frac{1}{2\sqrt{x + 4}}}{\frac{4}{2\sqrt{4x + 1}}} = \lim_{x \to \infty} \frac{\frac{4}{2\sqrt{4x + 1}}}{\frac{2\sqrt{4x + 1}}{2\sqrt{4x + 1}}} = \lim_{x \to \infty} \frac{4}{2\sqrt{4x + 1}} \]

We're back to where we started, so L'Hôpital's rule is useless.

(b) Evaluate this limit algebraically.

\[\lim_{x \to \infty} \frac{\sqrt{x + 4}}{\sqrt{4x + 1}} = \lim_{x \to \infty} \frac{\sqrt{x + 4}}{\sqrt{4x + 1}} = \left(\lim_{x \to \infty} \frac{x + 4}{4x + 1} \right)^{\frac{1}{2}} = \left(\lim_{x \to \infty} \frac{4x + 1}{4x + 1} \right)^{\frac{1}{2}} = \left(\frac{1}{4} \right)^{\frac{1}{2}} = \frac{1}{2} \]
11. This problem will evaluate an integral using the limit definition. We will evaluate
\[\int_{0}^{1} x^3 \, dx. \]

(a) If we partition the interval \([0, 1]\) into \(n\) equal length subintervals, how long is each interval? This is \(\Delta x_i\) for all \(i\).

\[\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n} \]

(b) Write a formula for the right end-point of the \(i^{th}\) interval. This is \(c_i\) for all \(i\).

\[c_i = 0 + i(\Delta x) = 0 + i\left(\frac{1}{n}\right) = \frac{i}{n} \]

(c) Write the integral as the limit of a sum.

\[R_n = \sum_{i=1}^{n} f(c_i) \Delta x = \sum_{i=1}^{n} \left(\frac{i}{n}\right)^3 \frac{1}{n} = \frac{1}{n^4} \sum_{i=1}^{n} i^3 \]

\[\int_{0}^{1} x^3 \, dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{1}{n^4} \sum_{i=1}^{n} i^3 \]

(d) Using the fact that \(\sum_{i=1}^{n} i^3 = \frac{n^4 + 2n^3 + n^2}{4}\) evaluate the limit.

\[\int_{0}^{1} x^3 \, dx = \lim_{n \to \infty} \frac{1}{n^4} \sum_{i=1}^{n} i^3 \]

\[= \lim_{n \to \infty} \frac{1}{n^4} \left(\frac{n^4 + 2n^3 + n^2}{4}\right) \]

\[= \lim_{n \to \infty} \frac{1}{4} \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) = \frac{1}{4} \]

(e) Is your answer consistent with the answer the Fundamental Theorem of Calculus gives?

Yes, since

\[\int_{0}^{1} x^3 \, dx = \frac{x^4}{4} \bigg|_{0}^{1} = \frac{1}{4} - 0 = \frac{1}{4} \]
12. Consider a continuous function f defined on the interval $(0, \infty)$ with the following characteristics.

- $f(3) = 0$, $f'(2) = 0$, $f'(5) = 0$, $f'(3)$ is undefined, $f''(2) = 0$, and $f''(6) = 0$
- $f'(x) < 0$ on $(0, 2) \cup (2, 3) \cup (5, \infty)$, but $f'(x) > 0$ on $(3, 5)$
- $f''(x) > 0$ on $(0, 2) \cup (6, \infty)$, but $f''(x) < 0$ on $(2, 3) \cup (3, 6)$
- $\lim_{x \to \infty} f(x) = -3$ and $\lim_{x \to 0^+} f(x) = \infty$

It may help to do part (e) first.

(a) Identify all critical points for f. Classify each as a local maximum, local minimum, or neither.

(b) Identify all inflection points for the graph of f, if they exist. Justify your answer.

(c) Does f have a global maximum on $(0, \infty)$? If so, what is it?

(d) Does f have a global minimum on $(0, \infty)$? If so, what is it?

(e) Sketch a graph of f below.