DO NOT WRITE HERE!

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Read the questions CAREFULLY.

Show your work in the space provided.

Make clear what your answers are.

BE NEAT.

Good Luck!
1. Let F be the vector space of continuous functions $f : \mathbb{R} \to \mathbb{R}$ that we have been using in class. Let $H = \{ f \in F \mid f$ has the same y-coordinate at $x = -1$ as it does at $x = 1 \}$, so a vector u belongs to H iff u is a function f satisfying $f(-1) = f(1)$.

 (1A) Give an example of a non-constant function f belonging to H.

 (1B) It’s true that H a subspace of F. For just the first TWO of the three conditions given in the three parts of the definition of a subspace (in the order we’ve always talked about them), prove that H satisfies that condition.

 1Bi) proof that the first condition, or part, of the subspace definition holds:

 1Bii) proof that the second condition of the subspace definition holds:
2. Let S be the vector space of all sequences $s = (s_1, s_2, s_3, \ldots)$ of real numbers that we’ve discussed in class, and F be the vector space of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Define $T : F \to S$ by

$$T(f) = (f(1) + 2, f(2) + 3, f(3) + 4, f(4) + 5, \ldots).$$

For example, if $f(x) = x^2$, then the second term in sequence $T(f)$ is $f(2) + 3 = 2^2 + 3 = 4 + 3 = 7$. The first two terms of $T(f)$ are then $(3, 7, \ldots)$.

(2A) So, if $f(x) = x^2$, what are the first five terms of the sequence $T(f)$?

(2B) Find $T(g)$ where $g(x) = x^3$. (Give the first five terms).

(2C) Find $T(5f) = T(5x^2)$ through the first five terms.

(2D) Is T a linear transformation? For each of the two parts of the definition of a linear transformation, either prove that T satisfies that part, or show it does not by giving a specific counterexample. I’d recommend considering the examples you’ve worked on in 2A–2C!

(2Di) (part one of the LT definition: your proof or counterexample):

(2Dii) (part two of the LT definition: your proof or counterexample):
3. Let \(A = \begin{bmatrix} 1 & 1 & -5 \\ 1 & 2 & 4 \\ 1 & -3 & 1 \end{bmatrix} \); let \(\mathbf{v}_1, \mathbf{v}_2, \) and \(\mathbf{v}_3 \) be the column vectors of \(A \), and let \(S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \).

(3A). Explain why \(A\mathbf{x} = \mathbf{b} \) has a solution \(\mathbf{x} \) for any \(\mathbf{b} \in \mathbb{R}^3 \).

(3B). Explain why the set \(S \) is linearly independent.

(3C). Parts 3A and 3B say that \(S \) is a basis for \(\mathbb{R}^3 \). Show that it is an orthogonal basis.

(3D.) Since \(S \) is an orthogonal basis of \(\mathbb{R}^3 \), there’s a formula that uses dot-products to find the weights needed to express a vector \(\mathbf{u} \in \mathbb{R}^3 \) as a LC of the members of \(S \). What is that formula?

(3E). Use the formula in 3D to express \(\mathbf{u} = \begin{bmatrix} -333 \\ 493 \\ -109 \end{bmatrix} \) as a linear combination of the vectors in \(S \). Show all your work. Express all weights as fractions in lowest terms.
4. Let \(A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 3 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix} \) and \(y = \begin{bmatrix} 9 \\ 18 \\ 28 \\ 4 \end{bmatrix} \).

(4A) It turns out that \(y \) is not in the column space of \(A \), but you do not need to check this. Find the least squares solution of \(Ax = y \). Show all your work.

(4B) Find the projection of \(y \) onto the column space of \(A \). Note well the columns are not orthogonal!

(4B) Find the distance from \(y \) to \(\text{Col}(A) \). Show all your work.
5. In this problem, in your answers and work, write all repeating decimal numbers to 4 places after the decimal point (not fractions). For example, write 1/3 as 0.3333... But maintain complete precision in the calculator itself.

There is no parabola passing through the points (2, 3) (3, 5) (4, 3 1/6) (6, 6 1/3); you do not need to verify this. [NOTE that 3 1/6 means 19/6 = 3.166666... and 6 1/3 = 19/3 = 6.333333... — enter such numbers into your calculator as fractions (eg, 19/6 and 19/3) to maintain maximum precision].

(5A) Find the parabola \(y = \beta_2 x^2 + \beta_1 x + \beta_0 \) that is the “best-fit” parabola for these points. Show all your work, including all matrices and vectors involved in solving this problem. Remember: write just 4 places for repeating decimal expansions.

(5B) What are the predicted values, that is, the \(y \)-coordinates of this best-fit parabola at \(x = 2, 3, 4 \) and 6, respectively?

(5C) What is the sum-of-the-squares (“SOS”) of the residuals for the predicted values found in (5B)? Show all your computations.

(5D) A polynomial whose coefficients are “sort of close” to the best-fit coefficients is \(y = 0.2x^3 - 0.5x + 4 \). If this polynomial were used to find the predicted values, what would they be?

(5E) What is the SOS of the residuals for the predicted values in 5D?
6. Let \(M = \begin{bmatrix} -15 & 22 & -11 \\ 44 & -92 & 44 \\ 110 & -220 & 106 \end{bmatrix} \)

6a) Let \(\mathbf{a} = \begin{bmatrix} -1 \\ 4 \\ 10 \end{bmatrix} \). Find \(Ma \). Is \(\mathbf{a} \) an eigenvector for \(M \)? If so, what’s the corresponding eigenvalue?

6b) It turns out that \(-4\) is an eigenvalue for \(M \). Find a basis for the corresponding eigenspace.

6c) Find the characteristic polynomial of \(M \) (this should be easy based on the previous two parts).

6d) Find, if possible, \(P \) and \(D \) for which \(M = PDP^{-1} \), and \(D \) is a diagonal matrix whose entries are eigenvalues of \(M \) and the corresponding columns of \(P \) are eigenvectors corresponding to those eigenvalues.

6e) Use your calculator to find \(P^{-1} \).
7. Let \(A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 3 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix} \) (same as in problem 4). Let \(R \) be the rref of \(A \). Find each of the following. Show any relevant matrices you used in your computations:

7A) Find a basis for \(\text{col}(A) \). Call this basis \(B \).

7B) Find a basis for \(\text{col}(R) \).

7C) Find a basis for \(\text{row}(A) \).
Problem 7, continued:

7D) Find a basis for \(\text{row}(R) \).

7E) Find a basis for \(\text{null}(A) \).

7F) Find a basis for \(\text{col}(A)^\perp \).
8. Again, let \(A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 3 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix} \) (same as in problem 4 and 7).

8A) Let \(b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \). Find all conditions on \(b_1, \ldots, b_4 \) which guarantee that \(Ax = b \) has a solution \(x \)

8B) Find \(b_1 \) and \(b_2 \) for which \(w = \begin{bmatrix} b_1 \\ b_2 \\ 13 \\ 21 \end{bmatrix} \) is in \(\text{col}(A) \).

8C) Find \([w]_B \) (see 7A, where \(B \) is defined, and 8B).

9. Suppose the determinant of some 4x4 matrix \(M \) is 5. Next to each of the following matrices, write its determinant.

\[
\begin{align*}
M^3 & \quad 3M \\
-M & \quad 4M + 3M + 2M + M
\end{align*}
\]