1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

 (a) Is this function continuous on the interval \((-\infty, \infty)\)? Explain.

 (b) Compute the average rate of change of \(f \) on \([2, 2.01]\).

 (c) Using the limit definition of the derivative, compute \(f'(x) \).

 (d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7, \) and \(f'(3) = \pi \) compute the following.

 (a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

 (b) \(j'(0) \) if \(j(x) = \frac{f(x)}{g(x)} \)

 (c) \(k'(0) \) if \(k(x) = f(g(x)) \)
3. Compute dy/dx for each of the following.

(a) $y = x^5 + 5^x + e^5 + \frac{x}{5} + \frac{5}{\sqrt[5]{x}} + \ln(5x) + \arctan(5x) + \ln(5) + \sin 5$

(b) $y = \sqrt[3]{x} \cos(7x^3)$

(c) $y = \frac{e^x + e^\pi}{\tan 4 - 7x}$

(d) $y = \tan(e^{x^2 \arcsin(5x)})$

(e) $y^3 + yx^2 + x^2 = 3y^2$
4. Given the graph of \(f \), sketch a graph of \(f' \) and a graph of \(F \), an antiderivative of \(f \) such that \(F(0) = -1 \).

5. Shown below is a graph of \(f' \) on its entire domain. The graph is NOT \(f \).

 At which \(x \)-value(s)

 (a) does \(f \) have a stationary point?
 (b) \(f \) decreasing?
 (c) \(f' \) increasing?
 (d) \(f' \) decreasing?
 (e) \(f \) concave up?
 (f) \(f \) concave down?

 (g) is \(f \) greatest?
 (h) is \(f \) least?
 (i) is \(f' \) greatest?
 (j) is \(f' \) least?
 (k) is \(f'' \) greatest?
 (l) is \(f'' \) least?

 On what interval(s) is

 (a) \(f \) increasing?
 (b) \(f \) decreasing?
6. Is \(y = 7e^{3x} \) a solution to the differential equation \(y'' + 2y' - 15y = 0 \)? Explain.

7. Rewrite \(\sin(\arctan(5x)) \) as an algebraic expression.

8. Evaluate the following limits.

 (a) \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

 (b) \(\lim_{x \to 0} \frac{\sin (12x) - 12x}{x^3} \)

 (c) \(\lim_{x \to 0} \frac{e^x - 1}{\cos x} \)

 (d) \(\lim_{x \to 2} \frac{x^3 - 8}{x - 2} \)