1. (15 points) Let W be the subspace spanned by the two vectors $\vec{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$.

Let $\vec{y} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$.

(a) Is the vector \vec{y} in W? Explain.

(b) Find a vector in W that is closest to \vec{y}.

(c) Find a vector that is orthogonal to W.
2. (15 points) Orthogonally diagonalize the matrix $A = \begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix}$. (The eigenvalues of A are 25 and -25.)
3. (12 points) Determine if the following sets are subspaces of the appropriate vector spaces. If a set is a subspace, find a basis and the dimension of the subspace.

(a) \[W = \left\{ \begin{bmatrix} 2a - c + d \\ b - 2c - 2d \\ a + 3b + d \\ 2b + c + d \end{bmatrix} : a, b, c, d \text{ are real numbers} \right\}. \]

(b) All polynomials in \(\mathbb{P}_3 \) of the form \(t + a \).
4. (12 points) Let $\vec{p}_1(t) = 2t - t^2$, $\vec{p}_2(t) = 2t$, $\vec{p}_3(t) = 2 - t$.

(a) Use coordinate vectors to show that $\mathcal{B} = \{\vec{p}_1, \vec{p}_2, \vec{p}_3\}$ is a basis for \mathbb{P}_2.

(b) Find the polynomial \vec{q} in \mathbb{P}_2, given that $[q]_B = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.
5. (10 points) Suppose \(\{ \vec{v}_1, \vec{v}_2 \} \) is a linearly independent set in \(\mathbb{R}^7 \).

(a) Show that \(\{ \vec{v}_1 + \vec{v}_2, \vec{v}_1 - \vec{v}_2 \} \) is also a linearly independent set.

(b) Is \(\vec{v}_1 \) in \(\text{Span}\{ \vec{v}_1 + \vec{v}_2, \vec{v}_1 - \vec{v}_2 \} \)? Explain.

6. (8 points) Suppose \(U \) is an \(n \times n \) orthogonal matrix. For every vector \(\vec{x} \) in \(\mathbb{R}^n \), show that the length of the vector \(U\vec{x} \) is the same as the length of the vector \(\vec{x} \). (Hint: Length of \(U\vec{x} \) is \(\sqrt{U\vec{x} \cdot U\vec{x}} \) and length of \(\vec{x} \) is \(\sqrt{\vec{x} \cdot \vec{x}} \). So it is enough to show that \(U\vec{x} \cdot U\vec{x} = \vec{x} \cdot \vec{x} \).)
7. (10 points) Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation given by \(T(x) = Ax \) (\(A \) is a 2 \(\times \) 2 matrix). Figure I below shows vectors \(\vec{u}, \vec{v} \) and \(\vec{w} \) and Figure II below shows vectors \(T(\vec{u}), T(\vec{v}), \) and \(T(\vec{w}) \). Use this information to answer the questions that follow.

(a) In Figure II, draw \(T(\vec{v} + \vec{w}) \).

(b) Which of the vectors \(\vec{u}, \vec{v} \) and \(\vec{w} \) (if any) are eigenvectors of \(A \)? What are the corresponding eigenvalues? Explain.

(c) Is \(T \) one-to-one? Explain.
8. (18 points) Short answers: (No explanations needed. Simply write your answers. If you do some calculation to get the answer, show the calculation.)

(a) Find the distance between the vector \(\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \) and the vector \(\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

(b) A \(2 \times 4 \) matrix has rank 2. Find the dimension of the null space of this matrix.

(c) Suppose \(A \) is a \(4 \times 4 \) matrix with \(\det A = 20 \). What is \(\det 3A \)?

(d) Let \(B \) be a \(5 \times 5 \) matrix. The dimension of the eigenspace corresponding to the eigenvalue \(-3\) of \(B \) is 2. What is the dimension of \(\text{Nul} \ (B + 3I) \)? (Here \(I \) is the \(5 \times 5 \) identity matrix.)

(e) In the following figure, draw the orthogonal projection of the vector \(\vec{u} \) onto the subspace spanned by the vector \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \).
(f) Let $T : \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x_1, x_2, x_3, x_4) = (x_1 + x_2 - 2x_4, 2x_3 + x_4).$$

What is the standard matrix of T?

(g) Let $T : M_{2\times2} \to \mathbb{R}^2$ be the linear transformation defined by

$$T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a - c \\ b - d \end{bmatrix}.$$

i. Find $T \left(\begin{bmatrix} -2 & 5 \\ 0 & 20 \end{bmatrix} \right)$.

ii. Let $\vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find a matrix A in $M_{2\times2}$ such that $T(A) = \vec{b}$.