1. Consider the function \(f(x) = \frac{3}{5-2x} \).

(a) Is this function continuous on the interval \((-\infty, \infty)\)? Explain.
 No. The function is discontinuous at \(x = 2.5 \), where \(f \) is undefined (and has a vertical asymptote).
(b) Compute the average rate of change of \(f \) on \([2, 2.01]\).
 \[
 \frac{f(2.01) - f(2)}{2.01 - 2} = \left[\frac{3}{5-2(2.01)} - \frac{3}{5-2(2)} \right] \cdot \frac{1}{.01} \approx 6.122
 \]

(c) Using the limit definition of the derivative, compute \(f'(x) \).
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \quad \text{provided this limit exists}
 \]
 \[
 = \lim_{h \to 0} \frac{3}{5-2(x+h)} - \frac{3}{5-2x} \quad \text{common denominator}
 \]
 \[
 = \lim_{h \to 0} \frac{3(5-2x) - 3(5-2(x+h))}{h(5-2(x+h))(5-2x)}
 \]
 \[
 = \lim_{h \to 0} \frac{15 - 6x - (15 - 6x - 6h)}{h(5-2(x+h))(5-2x)}
 \]
 \[
 = \lim_{h \to 0} \frac{6h}{h(5-2(x+h))(5-2x)}
 \]
 \[
 = \lim_{h \to 0} \frac{6}{5-2(x+h))(5-2x)}
 \]
 \[
 = \frac{6}{(5-2x)^2}
 \]

(d) Find the equation of the tangent line to \(f \) at \(x = 2 \).
 We want \(y = mx + b \). \(m = f'(2) = \frac{6}{(5-2(2))^2} = 6 \), so \(y = 6x + b \).
 [Note that this slope agrees well with our answer from (b) above.]
 When \(x = 2 \), \(y = f(2) = \frac{3}{5-2(2)} = 3 \).
 Thus, \(3 = 6 \cdot 2 + b \), so \(b = -9 \) and we have \(y = 6x - 9 \).

2. Given that \(f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7 \), and \(f'(3) = \pi \) compute the following.

(a) \(h'(0) \) if \(h(z) = f(z)g(z) \)
 \(h'(0) = f'(0)g(0) + f(0)g'(0) = (5)(3) + (2)(7) = 29 \)

(b) \(j'(0) \) if \(j(z) = \frac{f(z)}{g(z)} \)
 \(j'(0) = \frac{f'(0)g(0) - f(0)g'(0)}{[g(0)]^2} = \frac{(5)(3) - (2)(7)}{3^2} = \frac{1}{9} \)

(c) \(k'(0) \) if \(k(z) = f(g(z)) \)
 \(k'(0) = f'(g(0)) \cdot g'(0) = f'(3) \cdot (7) = (\pi)(7) = 7\pi \)
3. (a) Find \(\frac{dy}{dt} \) if \(y = t^6 + 5t + e^t + \frac{t}{5} + \frac{5}{\sqrt{t}} + \ln(5t) + \arctan(5t) + \ln(5) + \sin(5) \).

\[
\frac{dy}{dt} = 5t^5 + (\ln 5)5^t + 0 + \frac{1}{5} - 5t^{-2} + 5 \cdot \frac{-1}{5}t^{-6/5} + \frac{1}{5t} \cdot 5 + \frac{1}{1 + (5t)^2} \cdot 5 + 0 + 0
\]

\[
= 5t^4 + (\ln 5)5^t + \frac{1}{5} - \frac{1}{t^2} - \frac{1}{t^{5/5}} + \frac{1}{t} + \frac{5}{1 + 25t^2}
\]

(b) Find \(\frac{dy}{dx} \) if \(y = \sqrt{x} \cos(7x^3) \).

\[
\frac{dy}{dx} = \frac{1}{3}x^{-2/3} \cos(7x^3) + \sqrt{x}(-\sin(7x^3)(21x^2)) = \frac{\cos(7x^3)}{3x^{2/3}} - 21x^{7/3} \sin(7x^3)
\]

(c) Find \(\frac{dy}{dz} \) if \(y = \frac{\tan^4 z}{\tan 4 - 7z} \).

\[
\frac{dy}{dz} = \frac{\tan^4 z}{\tan 4 - 7z^2} \cdot \frac{(\tan 4 - 7)(\tan^2 z + 1)}{\tan^2 z}
\]

(d) Find \(\frac{dy}{dr} \) if \(y = \tan(e^{r^2 \arcsin(5r)}) \).

\[
\frac{dy}{dr} = \sec^2(e^{r^2 \arcsin(5r)}) \cdot e^{r^2 \arcsin(5r)} \cdot \left[r^2 \frac{1}{\sqrt{1 - 25r^2}} \cdot 5 + 2r \arcsin(5r) \right]
\]

(e) Find \(\frac{dy}{dx} \) if \(y^3 + yx^2 + x^2 = 3y^2 \).

Here we use implicit differentiation.

\[
3y^2 \frac{dy}{dx} + \frac{dy}{dx} x^2 + 2xy + 2x = 6y \frac{dy}{dx}
\]

\[
3y^2 \frac{dy}{dx} + \frac{dy}{dx} x^2 - 6y \frac{dy}{dx} = -2xy - 2x
\]

\[
\frac{dy}{dx} = \frac{-2xy - 2x}{3y^2 + x^2 - 6y}
\]

(f) Find \(\frac{dy}{dx} \) if \(y = (1 + x^6)^{8x} \). Since we have \(x \) in the base and the exponent, we need logarithmic differentiation.

\[
\ln y = 8x \ln(1 + x^6)
\]

\[
\frac{1}{y} \frac{dy}{dx} = 8 \cdot \ln(1 + x^6) + 8x \cdot \frac{1}{1 + x^6} \cdot 6x^5
\]

\[
\frac{dy}{dx} = \left[8 \cdot \ln(1 + x^6) + \frac{48x^6}{1 + x^6} \right] \cdot y
\]

\[
\frac{dy}{dx} = \left[8 \cdot \ln(1 + x^6) + \frac{48x^6}{1 + x^6} \right] \cdot (1 + x^6)^{8x}
\]
4. Given the graph of f, sketch a graph of f' and a graph of F, an antiderivative of f such that $F(0) = -1$.

Note: The concave up portion on the left side of the graph of f is a perfect parabola, so its derivative (f') is linear; since you don’t know the equation for f, your graph of f' may be concave up/down there.

5. Shown below is a graph of f' on its entire domain. The graph is NOT f.

At which x-value(s)

(a) does f have a stationary point? c, f, h
(b) f decreasing? $(c, f) \cup (h, j)$
(c) f' increasing? $[a, b) \cup (d, g) \cup (i, j]$
(d) f' decreasing? $(b, d) \cup (g, i)$
(e) f concave up? $[a, b) \cup (d, g) \cup (i, j]$
(f) f concave down? $(b, d) \cup (g, i)$

(b) does f have a local max? c, h
(c) does f have a local min? f
(d) does f' have a stationary point? b, d, g, i
(e) does f' have a local max? b, g
(f) does f' have a local min? d, i
(g) is f greatest? c
(h) is f least? j
(i) is f' greatest? b
(j) is f' least? d
(k) is f'' greatest? e
(l) is f'' least? c

On what interval(s) is

(a) f increasing? $[a, c) \cup (f, h)$
6. Is \(y = 7e^{3x} \) a solution to the differential equation \(y'' + 2y' - 15y = 0 \)? Explain.

A given function \(y \) will be a solution to the differential equation if, when we substitute in \(y'' \), \(y' \), and \(y \), the equation is satisfied (that is, both sides of it are equal).

Since \(y = 7e^{3x} \), we know that \(y' = 21e^{3x} \) and \(y'' = 63e^{3x} \) from the Chain Rule.

Now we check to see whether our \(y \) satisfies the differential equation.

\[
y'' + 2y' - 15y = 0
\]
\[
63e^{3x} + 2 \cdot 21e^{3x} - 15 \cdot 7e^{3x} = 0
\]
\[
63e^{3x} + 42e^{3x} - 105e^{3x} = 0
\]
\[
0 = 0
\]

So, we see that \(y = 7e^{3x} \) is in fact a solution to this differential equation.

7. Rewrite \(\sin(\arctan(5x)) \) as an algebraic expression. [Students in the 8:00, 9:30, and 1:10 sections may omit this problem.]

Let \(\theta = \arctan(5x) \). That is, \(\theta \) is the angle whose tangent is \(5x \).

We draw a triangle for which \(\frac{\text{opposite}}{\text{adjacent}} = \frac{5x}{1} = 5x \).

\[
\begin{align*}
\theta & \quad 5x \\
1 & \quad z
\end{align*}
\]

\[
1^2 + (5x)^2 = z^2 \Rightarrow z = \sqrt{1 + 25x^2}
\]

\[
\sin(\arctan(5x)) = \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{5x}{\sqrt{1 + 25x^2}}
\]

8. Evaluate the following limits.

Throughout this solution, the symbol ★ will stand for whatever notation your instructor prefers for using L’Hopital’s Rule on the indeterminate form 0/0; this may be \(= \) or \(\not= \) or \(= \) or \(= \) or = or = “0/0” or “has the form \(\frac{0}{0} \)” and so, by L’Hopital’s Rule, is equal to” or something else. The symbol ⌂ will serve the same purpose for the indeterminate form \(\infty/\infty \).

(a) \[
\lim_{x \to \infty} \frac{x^2}{\ln x} \quad \text{\(\because \)} \quad \lim_{x \to \infty} \frac{2x}{1/x} = \lim_{x \to \infty} 2x^2 = \infty
\]

(b) \[
\lim_{z \to 0} \frac{\sin(12z) - 12z}{2z} \quad \text{★} \quad \lim_{z \to 0} \frac{12 \cos(12z) - 12}{3z^2} \quad \text{★} \quad \lim_{z \to 0} \frac{-144 \sin(12z)}{6z} \quad \text{★} \quad \lim_{z \to 0} \frac{-1728 \cos(12z)}{6} = -288
\]

(c) \[
\lim_{x \to 0} \frac{e^x - 1}{\cos x} = \frac{0}{1} = 0
\]

(d) \[
\lim_{r \to 2} \frac{r^3 - 8}{r - 2} \quad \text{★} \quad \lim_{r \to 2} \frac{3r^2}{1} = 12
\]

(e) \[
\lim_{x \to 0^+} x^3 \ln x \quad \text{[Students in the 8:00 and 9:30 sections may omit this problem.]}
\]

This is of the form \(0 \cdot (-\infty) \), so we rewrite it as a fraction to turn it into a L’Hopital’s Rule problem.

\[
\lim_{x \to 0^+} x^3 \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x^3}} \quad \text{\(\because \)} \quad \lim_{x \to 0^+} \frac{\ln x}{x^{-3}} = \lim_{x \to 0^+} \frac{1}{x} \cdot x^4 = \lim_{x \to 0^+} \frac{x^3}{-3} = 0 = 0
\]