1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

 (a) Is this function continuous on the interval \((-\infty, \infty)\)? Explain.

 (b) Compute the average rate of change of \(f \) on \([2, 2.01]\).

 (c) Using the limit definition of the derivative, compute \(f'(x) \).

 (d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7, \) and \(f'(3) = \pi \) compute the following.

 (a) \(h'(0) \) if \(h(z) = f(z)g(z) \)

 (b) \(j'(0) \) if \(j(z) = \frac{f(z)}{g(z)} \)

 (c) \(k'(0) \) if \(k(z) = f(g(z)) \)
3. (a) Find \(\frac{dy}{dt} \) if \(y = t^5 + 5t + e^5 + \frac{t}{5} + \frac{5}{\sqrt{t}} + \ln(5t) + \arctan(5t) + \ln(5) + \sin 5 \).

(b) Find \(\frac{dy}{dx} \) if \(y = \sqrt[3]{x} \cos(7x^3) \).

(c) Find \(\frac{dy}{dz} \) if \(y = e^z + e^\pi \tan 4 - 7z \).

(d) Find \(\frac{dy}{dr} \) if \(y = \tan(e^2 \arcsin(5r)) \).

(e) Find \(\frac{dy}{dx} \) if \(y^3 + yx^2 + x^2 = 3y^2 \).

(f) Find \(\frac{dy}{dx} \) if \(y = (1 + x^6)^8 \). \quad \text{Hint: use logarithmic differentiation.}
4. Given the graph of \(f \), sketch a graph of \(f' \) and a graph of \(F \), an antiderivative of \(f \) such that \(F(0) = -1 \).

5. Shown below is a graph of \(f' \) on its entire domain. The graph is NOT \(f \).

At which \(x \)-value(s) (if any) do the following:

(a) does \(f \) have a stationary point?
(b) does \(f \) have a local max?
(c) does \(f \) have a local min?
(d) does \(f' \) have a stationary point?
(e) does \(f' \) have a local max?
(f) does \(f' \) have a local min?
(g) is \(f \) greatest?
(h) is \(f \) least?
(i) is \(f' \) greatest?
(j) is \(f' \) least?
(k) is \(f'' \) greatest?
(l) is \(f'' \) least?

On what interval(s) is

(a) \(f \) increasing?
(b) \(f \) decreasing?

(c) \(f' \) increasing?
(d) \(f' \) decreasing?
(e) \(f \) concave up?
(f) \(f \) concave down?

6. Solve the IVP \(y' = e^x - \sin x + 5 \) given that \(y(0) = 3 \).
7. Evaluate the following limits.

(a) \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

(b) \(\lim_{z \to 0} \frac{\sin (5z) - 5z}{z^3} \)

(c) \(\lim_{x \to 0} \frac{e^x - 1}{\cos x} \)

(d) \(\lim_{r \to 2} \frac{r^3 - 8}{r - 2} \)

8. Consider the function \(f(x) = x^6 - 2x^3 \) on the interval \([-2, 2]\).

(a) Find the \(x \)- and \(y \)-coordinates of any and all critical points and classify each as a local maximum, local minimum, or neither.

(b) Find the \(x \)- and \(y \)-coordinates of any and all global extrema and classify each as a global maximum or global minimum.

(c) Find the \(x \)-coordinate(s) of any and all inflection points.