1.) (5 pts.) Evaluate the integral using the Fundamental Theorem of Calculus: $\int_{-1}^{2} e^x \, dx$.

Antiderivative of e^x : e^x

So: $\int_{-1}^{2} e^x \, dx = \left[e^x \right]_{-1}^{2} = e^2 - e^{-1}$

2.) (5 pts.) For the function g graphed below, estimate the value of $\int_{0}^{8} g(x) \, dx$ by evaluating a trapezoid sum with two equal subintervals.

This case gives us a **rectangle** and **triangle**, rather than **trapezoids**, when we connect the y-values at the endpoints.

Area = $(8)(\omega) + \frac{1}{2} (b)(h)$

= $(8)(4) + \frac{1}{2} (4)(6)$

= $24 + 12$

= 36