1. Find a parameterization f and corresponding region R for the helicoid shown. Note the helicoid wraps around the z-axis three times, and the points on the outer helix boundary are 2 units from the z-axis; finally, the bottom is 1 unit below the x-axis and the top is 2 units above it.

$$f(s, t) = (t \cos s, t \sin s, \frac{s}{2\pi})$$

where $s \in [-2\pi, 4\pi]$ and $t \in [0, 2]$

(i.e. $R = [-2\pi, 4\pi] \times [0, 2]$)

2. Recall one way to parameterize the unit sphere is

$$f(s, t) = (\cos(s) \cos(t), \cos(s) \sin(t), \sin(s))$$

for (s, t) in the rectangle $R = [-\pi/2, \pi/2] \times [0, 2\pi]$.

Find a subset A of R such that the parameterization f restricted to A yields the part of the sphere shaded in below. The lines connecting the poles are called meridians, or lines of longitude. They are 9 degrees apart on this figure. The bold meridian passes through $(1, 0, 0)$. Also shown is the “equator”, which is the unit circle in the xy plane. The lines running parallel to it are called “parallels”, or lines of latitude. On this figure they are 6 degrees apart. Give your answer in terms of radians.

The shaded region covers from $5 \times 6^\circ = 30^\circ = \pi/6$ north latitude to $7.5 \times 6^\circ = 45^\circ = \pi/4$.

It also covers from $-5 \times 9^\circ = 45^\circ + 45^\circ$ from “west to east”. However, we need correspondingly values in 0 to 2π, thus

-45° to 45°, or $-\pi/4$ to $\pi/4$ becomes $-\pi$ to π.

Together with 0 to $\pi/4$; thus $s \in [-\pi/4, \pi/4]$

and $t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

and the required subset is $\left[\frac{\pi}{6}, \frac{\pi}{4}\right] \times \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.

3. Consider the surface M having the parameterization given by $f(s, t) = (s^2, t^2, s + t)$ over the region in the st plane bounded by $s = 1$, $s = 2$ and the curves $t = s^2$ and $t = 6 - s$. Set up the double integral (with appropriate limits on the integrals) which represents the surface area of M. Simplify the integrand as much as possible.

4. Let M be as in (3). Let $g(x, y, z) = y + xz$. Set up the integral $\int_M g \, dS$; simplify the integrand as much as possible.

This adds a factor of $g(f(s, t))$ to the integral in 3, that is:

$$\int_{s=1}^{s=2} \int_{t=5}^{t=5} \left(t^3 + s^2(s+t) \right) \sqrt{9t^4 + 4s^2 + 36s^2 t^4} \, dt \, ds.$$