1. Use the ratio test to decide whether \(\sum_{k=1}^{\infty} \frac{(9/5)^k}{e^{k/2}} \) converges. Show all your work.

2. Does \(\sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln k} \) converge absolutely? You will find the integral test useful; it’s a fact that \(\int \frac{1}{x \ln x} \, dx = \ln(\ln(x)) \).

Show all your work and use correct notation in any evaluations of improper integrals.

3. Does \(\sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln k} \) converge conditionally? Explain why or why not.

4. If the series in (3) does converge to some number \(S \), find the partial sum \(\sum_{k=2}^{50} \frac{(-1)^k}{k \ln k} \), and an upper bound on how far away this partial sum is from \(S \). If the series in (3) diverges, find how many terms you need to add to obtain a partial sum which is bigger than 50.