NAME:

Show ALL your work CAREFULLY.

(a) Use the Ratio Test to determine, if possible, whether the following infinite series converges or diverges.

\[\sum_{n=1}^{\infty} \frac{n^2}{2^n} \]

Since \(a_n = \frac{n^2}{2^n} \), we have

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2/2^{n+1}}{n^2/2^n} = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 \cdot \frac{2^n}{2^{n+1}} = \frac{1}{2} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 = \frac{1}{2}.
\]

By the Ratio Test, the limit \(\frac{1}{2} < 1 \) so the series \(\sum_{n=1}^{\infty} \frac{n^2}{2^n} \) converges.

(b) Determine whether the following alternating series converges conditionally, converges absolutely, or diverges. If it converges, find lower and upper bounds for the limit. Justify your answer.

\[\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}} \]

The corresponding series of absolute values is \(\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \) which diverges by the \(p \)-test (with \(p = \frac{1}{2} \)). Since the sequence \(\{ \frac{1}{\sqrt{k}} \} \) is decreasing to 0, the Alternating Series Test asserts that the series \(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}} \) converges. Hence, we conclude that \(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}} \) converges conditionally.

The first and second partial sums are \(S_1 = \frac{1}{\sqrt{1}} = 1, S_2 = 1 - \frac{1}{\sqrt{2}} \) so we have

\[1 - \frac{1}{\sqrt{2}} < \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}} < 1. \]

Date: November 30, 2011.