1. (6) Determine if the series is convergent or divergent. \[\sum_{n=1}^{\infty} \frac{\ln(n)}{n^4} \]

Since \(\ln(n) \leq n^d \) (eventually) for \(d > 0 \), we have \(a_n = \frac{\ln(n)}{n^4} \leq \frac{n^d}{n^d} = \frac{1}{n^{4-d}} \).

The way we have the inequality, we need to choose a \(d \) value that gives a \(b_n \) that produces a convergent series. Any value with \(0 < d < 3 \) will work. Taking \(d = 1 \) gives \(a_n = \frac{\ln(n)}{n^4} \leq \frac{1}{n^3} \).

By the PST, \(\sum_{n=1}^{\infty} \frac{1}{n^3} \) is convergent. So by DCT, \(\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2} \) is convergent.

2. (4) Determine if the series is Convergent or Divergent. \[\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n!} \]

Try the Ratio Test

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1
\]

So by the Ratio Test, the series \(\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n!} \) is Absolutely Convergent (A.C.). This means that the series is Convergent.