1. A “True or False” question. In this problem, assume A and B are 4×4 square matrices. Suppose:
 i) $\text{rref}(A) = R$ where R has exactly three leading-1’s,
 ii) $\text{rref}(B) = S$ and $S = I_4$. In the left margin, next to each statement, write “T” if the statement is always true and “F” if it’s not always true, for any such matrices A and B.

a) A is an invertible matrix.

b) The determinant of B is non-zero.

c) The equation $Ax = b$ has infinitely many solutions x for each $b \in \mathbb{R}^4$.

d) $\text{Nul}(A) = \text{Nul}(R)$.

e) $\text{rank}(A) = 3$.

f) $\text{Col}(B) = \text{Col}(S)$.

g) The number 0 is an eigenvalue for A.

h) The number 0 is an eigenvalue for B.

i) $\text{Nul}(B) = \{0\}$.

j) A and B are not row equivalent.

k) A and B are not similar.

l) In any basis of $\text{Nul}(A)$, there is exactly one vector.
2. Let \(B = \begin{bmatrix} 5 & 1 & 2 \\ -5 & 11 & 2 \\ 10 & -4 & 2 \end{bmatrix} \) Here are some facts about \(B \):

(i) \(v = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} \) is in \(\text{Nul}(B) \),

(ii) \(\lambda = 10 \) is an eigenvalue of \(B \),

(iii) \(u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) is an eigenvector for \(B \).

You should be able to answer these questions without finding any determinants and with maybe just one rref.

a) What is the eigenvalue corresponding to the eigenvector \(u \)?

b) What is the characteristic polynomial of \(B \) in factored form?

c) Show that \(B \) is diagonalizable by exhibiting \(P, D \) and \(P^{-1} \) that have the required properties.
3. Let \(C = \begin{bmatrix} 4 & 3 & -1 \\ 0 & 7 & -1 \\ 0 & 6 & 2 \end{bmatrix} \).

a) Find the characteristic polynomial of \(C \) in factored form starting from \(\det(C - \lambda I) \); show all your work.

b) One of the eigenvalues should have multiplicity 2. Find a basis for the eigenspace of that eigenvalue.

c) Without actually finding \(P, D \) and \(P^{-1} \), explain why \(C \) is diagonalizable.
4. Let M be the 4×4 matrix here. FACT: The product of

$$
\begin{bmatrix}
6 & 1 & 2 & 7 \\
2 & 6 & 2 & -4 \\
2 & 3 & 6 & -3 \\
2 & -4 & 2 & 6
\end{bmatrix}
\begin{bmatrix}
12 & 7 & 5 & -3 \\
-1 & 2 & 6 & 2 \\
0 & 6 & 7 & 1 \\
7 & 0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
10 & 0 & 10 & -2 \\
0 & 0 & 12 & -1 \\
-1 & 0 & 14 & 6 \\
0 & 0 & 0 & 3
\end{bmatrix}
$$

is

$$
\begin{bmatrix}
120 & 56 & 50 & 0 \\
-10 & 38 & 60 & 0 \\
0 & 56 & 70 & 0 \\
70 & 18 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
4 & 0 & 100 & 20 \\
0 & 0 & 0 & -10 \\
-4 & 0 & 140 & 20 \\
0 & 0 & 0 & 30
\end{bmatrix}
$$

(a) Use this fact to find the eigenvalues of M, and bases for their respective eigenspaces. Note the fact contains useful and not useful information!

(b) Is M diagonalizable? (Y/N)
5. Let \(D = \begin{bmatrix} a & 0 & 1 \\ c & 2 & 0 \\ 1 & 0 & e \end{bmatrix} \) and suppose \(\det(D) = -10 \). Find each of the following:

(a) \(\det(D^3) \)
(b) \(\det(3D) \)

(c) \(\det(D+D) \)
(d) \(\det(D^{-1}) \)

(e) \(\det(D) \)
(f) \(\det(D^T) \)

(g) \(ae \)
(h) \(\det \left(\begin{bmatrix} a & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & e \end{bmatrix} \right) \)