Math 105: Review for Exam II

1. Find \(dy/dx \) for each of the following.
 (a) \(y = x^2 + 2^x + e^{2x} + \ln 2 + \ln(2x) + (\ln 2)x + \arctan 2 \)

 (b) \(y = \sqrt{x} \cdot \arctan(5x) \)

 (c) \(y = \ln(\tan(2^{\cos(x^2)})) \)

 (d) \(y = \frac{x + e^\pi}{\cos 4 + \sin^5(6x)} \)

 (e) \(y = (x^2 + 1)^{\sin x} \)

2. Consider the curve defined by \(x^3 + y^3 = \frac{9}{2} xy \) (known as the Folium of Descartes).
 (a) Find \(dy/dx \).
(b) Verify that the point (1,2) is on the curve above.

(c) Find the equation of the tangent line at the point (1,2).

3. Evaluate the following limits.

(a) \[\lim_{x \to 1} \frac{x^3 - 1}{7 - 7x} \]

(b) \[\lim_{x \to 0} \frac{1 - \cos(2x)}{3^x} \]

(c) \[\lim_{x \to 0} \frac{1 - \cos(4x)}{5x^2} \]

(d) \[\lim_{x \to \infty} \frac{x^2}{2^x} \]

(e) \[\lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^{503x} \] [Students in the 8:00 and 9:30 sections may omit this problem.]

4. Rewrite \(\tan(\arccos x) \) as an algebraic expression - no trigonometric or inverse trigonometric functions.
 [Students in the 8:00, 9:30, and 1:10 sections may omit this problem.]
5. Consider the function \(f(x) = x^4 e^x \) with domain all real numbers.

 (a) Find the \(x \)-value(s) of all roots (\(x \)-intercepts) of \(f \).

 (b) Find the \(x \)- and \(y \)-value(s) of all critical points and identify each as a local max, local min, or neither.

 (c) Find the \(x \)- and \(y \)-value(s) of all global extrema and identify each as a global max or global min.

 (d) Find the \(x \)-value(s) of all inflection points.

 (e) Sketch \(f \).
6. How would your answers to the previous question change if the domain of \(f \) were \([-10, 10]\)?

7. You are planning to build a box-shaped aquarium with no top and with two square ends. Your budget is $288. If the glass for the sides costs $12 per square foot and the opaque material for the bottom costs $3 per square foot, what dimensions will maximize the volume? Be sure to show how you know you have found the maximum.