Math 206 Quiz Eight

Name: _______________________

1. Given the vector field $\vec{F}(x, y, z) = (y, x, 1)$
 a. Prove that \vec{F} is path independent in \mathbb{R}^3 by finding a potential function for \vec{F}.
 b. If C is the path in \mathbb{R}^3 parametrized by $\vec{g}(t) = (t^4, \sin(\frac{\pi t}{2}), t)$ for $0 \leq t \leq 1$, calculate $\int_C \vec{F} \cdot d\vec{x}$.

2. Prove that if $U \subset \mathbb{R}^n$ is an open connected set and $\vec{F} : U \to \mathbb{R}^n$ is a continuous vector field, then \vec{F} is path independent on U if and only if $\oint_C \vec{F} \cdot d\vec{x} = 0$ for all closed paths C that lie in U.