1. Let \(f(x) = (\sqrt{x-1})^5 = (x-1)^{5/2} \).

1a. Use the following table of derivatives of \(f \) to find the third degree Taylor polynomial approximation \(P_3(x) \) of \(f(x) \), in powers of \(x-5 \), ie, \(x_0 = 5 \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(f^{(k)}(x))</th>
<th>(f^{(k)}(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>((x-1)^{5/2})</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{5}{2}(x-1)^{3/2})</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{15}{4}\sqrt{x-1})</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{15}{8}\sqrt{x-1})</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>(-\frac{15}{16}(x-1)^{-3/2})</td>
<td>-15</td>
</tr>
</tbody>
</table>

We need coeffs:

\[
C_0 = 32, \quad C_1 = 20, \quad C_2 = \frac{15/2}{2!} = \frac{15}{4}, \quad C_3 = \frac{15/16}{3!} = \frac{5}{32}
\]

\[
P_3(x) = 32 + 20(x-5) + \frac{15}{4}(x-5)^2 + \frac{5}{32}(x-5)^3
\]

1b. Taylor’s theorem guarantees that \(f \) and \(P_3 \) will separate by no more than what value (call it \(\epsilon \)), on the interval \([2.5, 6]\)? Show all your work. (Find \(K_4 \) to two decimal places. Find the maximum guaranteed error \(\epsilon \) to 4 decimal places.)

\[
|f(x) - P_3(x)| \leq \epsilon = \frac{K_4 |x-5|^4}{4!}
\]

where \(|f^{(4)}(x)| \leq K_4 \) on \([2.5, 6]\).

Graphical analysis and tables imply the smallest \(K_4 \) to two decimal places is 0.52

Also, the max of |x-5|^4 occurs at x = 2.5

\[
\epsilon = \frac{0.52 \times 2.5^4}{4!} \approx 0.8464
\]

1c. Since \(f(x) = (\sqrt{x-1})^5 \), we could use it to find \((\sqrt{3})^5 = 3^{5/2}\) by taking \(x = 4 \). Use the same \(x \) to approximate \((\sqrt{3})^5\) with your Taylor polynomial \(P_3(x) \). What do you get? What’s the error in this approximation? (Write your answers to 4 decimal places).

By calculator, \(3^{5/2} \approx 15.5885\)

And \(P_3(4) = 15.5938 \); the difference is \(\approx 0.0053\).
2. Find \(\int \frac{x^3 - 4x}{\sqrt{4 + x^2}} \, dx \) by introducing an appropriate trig substitution, say, \(x = 2 \tan t \). Express your answer in terms of \(x \) and \(\sqrt{4 + x^2} \) (leave no trig functions in your answer if possible).

Let \(x = 2 \tan t \). Then \(x^3 = 8 \tan^3 t \), \(4x = 8 \tan t \), \(dx = 2 \sec^2 t \, dt \).

and \(\sqrt{4 + x^2} = \sqrt{4 + 4 \tan^2 t} = 2 \sqrt{1 + \tan^2 t} = 2 \sec t \).

Making all these substitutions, we get \(\int \frac{x^3 - 4x}{\sqrt{4 + x^2}} \, dx = \int \frac{8 \tan^3 t - 8 \tan t}{2 \sec t} \, 2 \sec^2 t \, dt \).

\(= 8 \int (\tan^2 t - 1) \sec t \, dt \).

Next, since \(\tan^2 t = (\sec^2 t - 1) \) we rewrite this now as

\(= 8 \int (\sec^2 t - 2) \sec t \, dt \).

\(= 8 \int (u^2 - 2) \, du \).

Now, from the very 1st line, \(x = 2 \tan t \Rightarrow \frac{x}{2} = \tan t = \frac{opp}{adj} \) in this right triangle.

Now, \(\sec t = \frac{hyp}{adj} = \frac{\sqrt{4 + x^2}}{2} \) so \(\int \sec t \, dt = \ln \left(\frac{\sqrt{4 + x^2} + 2}{2} \right) + C \) becomes

\(\frac{8}{3} \left(\frac{\sqrt{4 + x^2}}{2} \right)^3 - 16 \frac{\sqrt{4 + x^2}}{2} + C \).

Or, \(\frac{1}{3} (4 + x^2)^{3/2} - 8 \sqrt{4 + x^2} + C \).

3. At some point, most calculus students learn that \(\frac{d}{dt} \arcsin t = \frac{1}{\sqrt{1 - t^2}} \). But to find \(\int \arcsin x \, dx \) requires integration by parts. Show how.

"LIALTE" suggests letting \(u \) be the Inverse trig function, so let \(u = \arcsin x \).

WOW! we've been GIVEN (reminded of) \(u' \) in the first sentence!!! (\(\frac{1}{\sqrt{1 - x^2}} \)

So:

\(\begin{align*}
 u &= \arcsin x \\
 u' &= \frac{1}{\sqrt{1 - x^2}} \\
 v &= x \\
 v' &= dx
\end{align*} \)

\(\Rightarrow \int \arcsin x \, dx = uv - \int v'u \, dx \).

This last integral can be done quickly by a substitution:

Let \(u = 1 - x^2 \); \(dw = -2x \, dx \) and so \(-\frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{-2x \, dx}{\sqrt{1 - x^2}} = \frac{1}{2} \int \frac{dw}{\sqrt{w}} \).

So:

\(w = 1 - x^2 \); \(dw = -2x \, dx \) and so \(-\frac{x}{\sqrt{1 - x^2}} \, dx \) becomes \(\frac{1}{2} \int \frac{dw}{\sqrt{w}} = \frac{1}{2} \left(\frac{w^{1/2}}{1/2} \right) + C = \sqrt{w} + C = \sqrt{1 - x^2} + C \).

Finally:

\(\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + C \).
4A. Solve the differential equation \(\frac{dy}{dx} = \frac{x^5}{y} \). Write your answer as \(y = \ldots \)

\[
\frac{dy}{dx} = \frac{x^5}{y} \quad \Leftrightarrow \quad y \frac{dy}{dx} = x^5 dx \\
\Leftrightarrow \int y \, dy = \int x^5 \, dx \\
\Leftrightarrow \frac{y^2}{2} = \frac{x^6}{6} + C_1 \\
\Leftrightarrow y^2 = \frac{x^6}{3} + 2C_1 = \frac{x^6}{3} + C \\
\Leftrightarrow y = \pm \sqrt{\frac{x^6}{3} + C}
\]

4B. Your answer to 4A is a whole family of solutions determined by choice of some constant. Which one of those solutions is the solution to the initial value problem: \(\frac{dy}{dx} = \frac{x^5}{y} \); \(y(3) = 16 \)? Again, write your answer as \(y = \ldots \)

We need to choose the solution \(y(y) \) which makes \(y(3) = 16 \), that is, \(y = 16 \) for \(x = 3 \).

Since 16 is positive, we need \(y = +\sqrt{\frac{x^6}{3} + C} \) \([\text{if given } y(3) = -16, \text{we'd take}]

\[y = -\sqrt{\frac{x^6}{3} + C} \]

Now, \(y = 16 \) and \(x = 3 \) mean:

\[
16 = \sqrt{\frac{3^6}{3} + C} \\
= \sqrt{3^5 + C} \\
= \sqrt{243 + C}
\]

So \(16^2 = 243 + C \)

\(256 = 243 + C \)

Finally:

\(y = \sqrt{\frac{x^6}{3} + 13} \)

NOTE WELL!

You cannot replace

\(y = \pm \sqrt{\frac{x^6}{3} + C} \) with \(\sqrt{x^6} + K \).

(The \(C \) doesn't "come out from under the \(\sqrt{} \)."

If this was OK, then we'd have

\[16 = \sqrt{\frac{3^6}{3} + K} \]

\[16 = \sqrt{243} + K \]

\[K = 16 - \sqrt{243} = 0.41154... \]

But if you graph \(\sqrt{\frac{x^6}{3} + 13} \) and \(\sqrt{\frac{x^6}{3} + 0.4115} \) together, you'll see they are DIFFERENT functions!

(in particular, they have intercepts of \(\sqrt{3} \approx 3.0 \) and \(0.4115 \) respectively!)
5A. Find \(\int \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx \).
Show all your work, from setting up the partial fraction decomposition to solving for \(A, B, C \), etc, to final integrations.

\[
\int \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx = \int \frac{A}{1 + x^2} + \frac{B}{x - 3} + \frac{C}{x + 3} \, dx
\]

Note: \(4x - 5 + 7x^2 = (A + B)(x - 3) + C(1 + x^2) \)

If \(x = 3 \):
\[
70 = (A \cdot 3 + B)0 + C(1 + 9) \Rightarrow 70 = 10C \Rightarrow [C = 7]
\]

If \(x = 0 \):
\[
-5 = (A \cdot 0 + B)(-3) + 7(1 + 0^2) \Rightarrow -5 = 3B + 7 \Rightarrow 12 = 3B \Rightarrow [B = 4]
\]

If \(x = 1 \):
\[
12 = (A \cdot 1 + 4)(1) + 7(1 + 6) \Rightarrow 12 = 4A + 4 + 19 \Rightarrow [A = 0]
\]

(Or, if \(x = 1 \):
\[
6 = (A \cdot 1 + 4)(-2) + 7(1 + 1) \Rightarrow 6 = -2A - 8 + 14 \Rightarrow 6 = -2A + 6 \Rightarrow [A = 0]
\]

So
\[
\int \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx = \int \frac{0x + 4}{1 + x^2} + \frac{7}{x - 3} \, dx
\]

\[
= 4 \int \frac{dx}{1 + x^2} + 7 \int \frac{dx}{x - 3}
\]

\[
= 4 \arctan x + 7 \ln |x - 3| + K
\]

(best not to write "C" here since C has already been used in this problem)

5B. Explain why \(\int_0^3 \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx \) is an improper integral.

The integrand, \(\frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \), has a vertical asymptote at \(x = 3 \):

5C. Does the integral in 5B converge? Explain! (You do not have to make a table. Just make a good argument, knowing standard behavior of the functions involved in the anti-derivative in 5A).

By definition, \(\int_0^3 \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx = \lim_{B \to 3^-} \int_0^B \frac{4x - 5 + 7x^2}{(1 + x^2)(x - 3)} \, dx = \lim_{B \to 3^-} \left[4 \arctan x + 7 \ln |x - 3| \right]_0^B \)

Now, as \(B \to 3^- \), \(x - 3 \to 0^- \), so \(7 \ln |x - 3| \to -\infty \); hence the integral in 5B DIVERGES.

Note: the "p-test" is not helpful here:

It's for integrals of the form \(\int_1^\infty \) ...
6. Here is the graph of \(f(x) = \begin{cases}
0 & \text{if } x < -1 \\
0.25(x + 1) & \text{if } -1 \leq x < 1 \\
\lambda e^{-\lambda x} & \text{if } 1 \leq x
\end{cases} \)

for a certain value of \(\lambda \):

6a. By definition, what is the total area of the entire (both the light and dark parts combined) shaded region required to be in order for \(f \) to be a probability density function?

\[\text{Area must be 1} \]

6b. It's easy to find the area of the lightly-shaded region. What is it?

\[\text{it's the area of a triangle} = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 2 \cdot \frac{1}{2} = \frac{1}{2} \]

6c. Find \(\lambda \) so that the area of the darkly-shaded region is what it needs to be, according to your answers in 6a and 6b. You may use without verification this fact: \(\int_{a}^{\infty} \lambda e^{-\lambda x} \, dx = e^{-\lambda a} \).

The area of the dark region must also be \(\frac{1}{2} \) so that the TOTAL area is 1.

The area of the dark region is \(\frac{1}{2} = \int_{a=1}^{\infty} \lambda e^{-\lambda x} \, dx = e^{-\lambda} \)

so \(\frac{1}{2} = e^{-\lambda} \) \(\ln \frac{1}{2} = -\lambda \); \(\lambda = -\ln \frac{1}{2} = (-\ln(0.5)) \)

so \(\lambda = 0.6931 \ldots \)

6d. Suppose that \(X \) is a random variable with this \(f \) as its probability density function. What's the probability that \(X \) is negative?

It's the area of the little \(\triangle \) marked \(\smiley \), which is \(\frac{1}{2} \cdot 1 \cdot 0.25 = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \)

6e. What's the probability that \(X \) is in the interval \([0, 1]\)?

It's the area of the trapezoid next to the \(\bigcirc \) marked \(T' \) which is \(\frac{1}{2} \left(\frac{1}{2} + 1 \right) \cdot \frac{3}{4} = \frac{3}{8} \)

6f. What's the probability that \(X \) is greater than 4?

\[\int_{4}^{\infty} \lambda e^{-\lambda x} \, dx = e^{-\lambda} \cdot \frac{3}{4} \]

\[= e^{-\lambda} \cdot \frac{3}{4} = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8} \]