Math 106: Review for Exam II - SOLUTIONS

INTEGRATION TIPS

• Substitution: usually let \(u = \) a function that’s “inside” another function, especially if \(du \) (possibly off by a multiplying constant) is also present in the integrand.

• Parts: \[\int u \, dv = uv - \int v \, du \quad \text{or} \quad \int uv' \, dx = uv - \int u'v \, dx \]

How to choose which part is \(u \)? Let \(u \) be the part that is higher up in the LIATE mnemonic below.

(The mnemonics ILATE and LIPET will work equally well if you have learned one of those instead; in the latter \(A \) is replaced by \(P \), which stands for “polynomial.”)

Logarithms (such as \(\ln x \))
Inverse trig (such as \(\arctan x, \arcsin x \))
Algebraic (such as \(x, x^2, x^3 + 4 \))
Trig (such as \(\sin x, \cos 2x \))
Exponentials (such as \(e^x, e^{3x} \))

• Rational Functions (one polynomial divided by another): if the degree of the numerator is greater than or equal to the degree of the denominator, do long division then integrate the result.

Partial Fractions: here’s an illustrative example of the setup.

\[\frac{3x^2 + 11}{(x + 1)(x - 3)^2(x^2 + 5)} = \frac{A}{x + 1} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} + \frac{Dx + E}{x^2 + 5} \]

Each linear term in the denominator on the left gets a constant above it on the right; the squared linear factor \((x - 3)\) on the left appears twice on the right, once to the second power. Each irreducible quadratic term on the left gets a linear term \((Dx + E)\) above it on the right.

• Trigonometric Substitutions: some suggested substitutions and useful formulae follow.

<table>
<thead>
<tr>
<th>Radical Form</th>
<th>(\sqrt{a^2 - x^2})</th>
<th>(\sqrt{a^2 + x^2})</th>
<th>(\sqrt{x^2 - a^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>(x = a \sin t)</td>
<td>(x = a \tan t)</td>
<td>(x = a \sec t)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\sin^2 x + \cos^2 x &= 1 \\
\sin^2 x &= \frac{1}{2} - \frac{\cos(2x)}{2} \\
\tan^2 x + 1 &= \sec^2 x \\
\cos^2 x &= \frac{1}{2} + \frac{\cos(2x)}{2} \\
\sin(2x) &= 2 \sin x \cos x
\end{align*}
\]

• Powers of Trigonometric Functions: here are some strategies for dealing with these.

<table>
<thead>
<tr>
<th>(\int \sin^m x \cos^n x , dx)</th>
<th>Possible Strategy</th>
<th>Identity to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) odd</td>
<td>Break off one factor of (\sin x) and substitute (u = \cos x).</td>
<td>(\sin^2 x = 1 - \cos^2 x)</td>
</tr>
<tr>
<td>(n) odd</td>
<td>Break off one factor of (\cos x) and substitute (u = \sin x).</td>
<td>(\cos^2 x = 1 - \sin^2 x)</td>
</tr>
<tr>
<td>(m) even AND (n) even</td>
<td>Use (\sin^2 x + \cos^2 x = 1) to reduce to only powers of (\sin x) or only powers of (\cos x), then use table of integrals #39–42 or identities shown to right of this box.</td>
<td>(\sin^2 x = \frac{1}{2} - \frac{\cos(2x)}{2}) or (\cos^2 x = \frac{1}{2} + \frac{\cos(2x)}{2})</td>
</tr>
</tbody>
</table>
\[
\int \tan^m x \sec^n x \, dx
\]

\(m\) odd	Break off one factor of \(\sec x \tan x\) and substitute \(u = \sec x\).	\(\tan^2 x = \sec^2 x - 1\)
\(n\) even	Break off one factor of \(\sec^2 x\) and substitute \(u = \tan x\).	\(\sec^2 x = \tan^2 x + 1\)
\(m\) even AND \(n\) odd	Use identity at right to reduce to powers of \(\sec x\) alone. Then use table of integrals \#51 or integration by parts.	\(\tan^2 x = \sec^2 x - 1\)

Useful Trigonometric Derivatives and Antiderivatives

\[
\frac{d}{dx} \tan x = \sec^2 x \\
\frac{d}{dx} \sec x = \sec x \tan x \\
\int \sec x \, dx = \ln |\sec x + \tan x| + C
\]

- Improper integrals: look for \(\infty\) as one of the limits of integration; look for functions that have a vertical asymptote in the interval of integration. It may be useful to know the following limits.

\[
\begin{align*}
\lim_{x \to \infty} e^x &= \infty \\
\lim_{x \to \infty} e^{-x} &= 0 \\
\lim_{x \to \infty} 1/x &= 0 \quad \text{Note: this is the same as}\, \lim_{x \to -\infty} e^x. \\
\lim_{x \to \infty} 1/x &= \infty \quad \text{Note: the answer is the same for}\, \lim_{x \to 0^+} 1/x^2 \text{ and similar functions.} \\
\lim_{x \to \infty} \ln x &= \infty \\
\lim_{x \to 0^+} \ln x &= -\infty \\
\lim_{x \to \infty} \arctan x &= \pi/2
\end{align*}
\]

1. Evaluate the following.

(a) Let \(u = \sin x\), so \(du = \cos x \, dx\).

\[
\int \sin^6 x \cos^3 x \, dx = \int \sin^6 x (1 - \sin^2 x) \cos x \, dx \\
= \int u^6 (1 - u^2) \, du \\
= \int (u^6 - u^8) \, du \\
= \frac{u^7}{7} - \frac{u^9}{9} + C \\
= \frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + C
\]

(b) Let \(x = 10 \tan t\), so \(dx = 10 \sec^2 t \, dt\).

\[
x^2 + 10^2 = y^2 \Rightarrow y = \sqrt{x^2 + 100} \\
\sec t = \frac{\text{hyp}}{\text{adj}} = \frac{\sqrt{x^2 + 100}}{10} \\
\tan t = \frac{\text{opp}}{\text{adj}} = \frac{x}{10}
\]
\[
\int \frac{dx}{\sqrt{100 + x^2}} = \int \frac{10 \sec^2 t \, dt}{\sqrt{100 + 100 \tan^2 t}}
\]
\[
= \int \frac{10 \sec^2 t \, dt}{10 \sqrt{1 + \tan^2 t}}
\]
\[
= \int \frac{\sec^2 t \, dt}{\sqrt{\sec^2 t}}
\]
\[
= \int \sec t \, dt
\]
\[
= \ln |\sec t + \tan t| + C
\]
Now use triangle above.

(c) This is an improper integral, so we need to use a limit.
\[
\int_{3}^{\infty} \frac{1}{x(\ln x)^{100}} \, dx = \lim_{t \to \infty} \int_{3}^{t} \frac{1}{x(\ln x)^{100}} \, dx
\]
\[
= \lim_{t \to \infty} \int_{3}^{x=t} \frac{1}{u^{100}} \, du
\]
\[
= \lim_{t \to \infty} \frac{u^{-99}}{-99} \bigg|_{x=3}^{x=t}
\]
\[
= \lim_{t \to \infty} \left[\frac{-1}{99(\ln x)^{99}} \bigg|_{3}^{t} \right]
\]
\[
= \lim_{t \to \infty} \left[-\frac{1}{99(\ln t)^{99}} + \frac{1}{99(\ln 3)^{99}} \right]
\]
\[
= 0 - \frac{1}{99(\ln 3)^{99}}
\]
\[
= \frac{1}{99(\ln 3)^{99}}
\]
So, the integral converges (to this value).

(d) We’ll use integration by parts: \(u = x \Rightarrow du = dx \) and \(dv = e^{-2x} \Rightarrow v = \frac{e^{-2x}}{-2} \).
\[
\int_{0}^{\infty} xe^{-2x} \, dx = \lim_{t \to \infty} \int_{0}^{t} xe^{-2x} \, dx
\]
\[
= \lim_{t \to \infty} \left[\frac{x e^{-2x}}{-2} \bigg|_{0}^{t} - \int_{0}^{t} \frac{e^{-2x}}{-2} \, dx \right]
\]
\[
= \lim_{t \to \infty} \left[\frac{-xe^{-2x}}{-2} + e^{-2x} \bigg|_{0}^{t} \right]
\]
\[
= \lim_{t \to \infty} \left[\frac{-xe^{-2x}}{-2} + e^{-2x} \bigg|_{0}^{t} \right]
\]
\[
= \lim_{t \to \infty} \left[\frac{-t e^{-2t}}{2e^{2t}} - \frac{1}{4e^{2t}} \bigg|_{0}^{t} \right]
\]
\[
= \lim_{t \to \infty} \left[\frac{-t e^{-2t}}{2e^{2t}} - \frac{1}{4e^{2t}} \bigg|_{0}^{t} \right]
\]
\[
= (0 - 0) - (0 - 1/4)
\]
\[
= 1/4
\]
So, the integral converges (to this value).

(e) Partial Fractions:
Write \(\frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 3} \). Now multiply both sides by \((x - 3)(x^2 + 1)\) to get
\[3x^2 + 2x - 13 = (Ax + B)(x - 3) + C(x^2 + 1).\]

Let \(x = 3\). Then \(20 = C(10)\), so \(C = 2\).

Let \(x = 0\). Then \(-13 = B(-3) + 2(1)\), so \(B = 5\).

Let \(x = 1\). Then \(-8 = (A(1) + 5)(-2) + 2(2)\), so \(A = 1\).

\[
\int \frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} \, dx = \int \left[\frac{x + 5}{x^2 + 1} + \frac{2}{x - 3} \right] \, dx
\]

\[
= \int \left[\frac{x}{x^2 + 1} + \frac{5}{x^2 + 1} + \frac{2}{x - 3} \right] \, dx
\]

Let \(u = x^2 + 1\), so \(du = 2xdx\).

\[
= \ln \frac{x^2 + 1}{2} + 5 \arctan x + 2 \ln |x - 3| + D
\]

(f) Since the degree of the numerator is greater than or equal to the degree of the denominator, we do long division.

\[
x - 6 \quad \frac{4x^3 - 27x^2 + 20x - 17}{4x^3 - 24x^2 - 3x^2 + 18x}
\]

\[
\frac{2x}{5} - \frac{2x - 12}{5}
\]

Now, we compute the integral.

\[
\int \frac{4x^3 - 27x^2 + 20x - 17}{x - 6} \, dx = \int \left[4x^2 - 3x + 2 - \frac{5}{x - 6} \right] \, dx = \frac{4x^3}{3} - \frac{3x^2}{2} + 2x - 5 \ln |x - 6| + C
\]

(g) This integral is improper at \(x = 1\) because the integrand has a vertical asymptote there, so we split into two integrals.

\[
\int_{-1}^{5} \frac{1}{(x - 1)^6} \, dx = \int_{-1}^{1} \frac{dx}{(x - 1)^6} + \int_{1}^{5} \frac{dx}{(x - 1)^6}
\]

\[
= \lim_{a \to 1^-} \int_{-1}^{a} \frac{dx}{(x - 1)^6} + \lim_{b \to 1^+} \int_{b}^{5} \frac{dx}{(x - 1)^6}
\]

\[
= \lim_{a \to 1^-} \left[-\frac{1}{5(a - 1)^5} \right]_{-1}^{a} + \lim_{b \to 1^+} \left[-\frac{1}{5(b - 1)^5} \right]_{b}^{5}
\]

\[
= \lim_{a \to 1^-} \left[-\frac{1}{5(a - 1)^5} \right] + \lim_{b \to 1^+} \left[-\frac{1}{5(b - 1)^5} \right]
\]

Since \(\lim_{a \to 1^-} \frac{-1}{5(a - 1)^5} = \infty\) and \(\lim_{b \to 1^+} \frac{-1}{5(b - 1)^5} = \infty\), this integral diverges (to \(\infty\)).
2. Find the second-order Taylor polynomial for \(f(x) = \sqrt{x} \) centered at \(x = 100 \). Then use your polynomial to estimate \(\sqrt{105} \).

\[
\begin{align*}
f(x) &= x^{1/2} \\
f'(x) &= \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \\
f''(x) &= -\frac{1}{4} x^{-3/2} = \frac{-1}{4x^{3/2}}
\end{align*}
\]

\[
P_2(x) = f(100) + f'(100)(x-100) + \frac{f''(100)}{2!} (x-100)^2
\]

\[
= 10 + \frac{x-100}{20} - \frac{(x-100)^2}{8000}
\]

Now, \(\sqrt{105} \approx P_2(105) = 10 + \frac{105-100}{20} - \frac{(105-100)^2}{8000} = 3279 \frac{3}{320} \).

3. What is the largest possible error that could have occurred in your estimate of \(\sqrt{105} \)? [Students in the 1:10 section may omit this problem.]

We know that \(|f(x) - P_n(x)| \leq \frac{K_{n+1}}{(n+1)!} |x-x_0|^{n+1} \).

In this case, \(n = 2, \ x_0 = 100, \) and \(x = 105 \).

\[K_3 = \text{max of } |f'''(x)| \text{ on } [100, 105] = \text{max of } \left| \frac{3}{8x^{5/2}} \right| \text{ on } [100, 105] = \frac{3}{8 \cdot 100^{5/2}} = \frac{3}{800,000}\]

Putting this all together, we have \(|f(x) - P_2(x)| \leq \frac{3}{320} \frac{1}{105 - 100}^3 = \frac{1}{12800} \).

4. Use comparisons to show whether each of the following converges or diverges. If an integral converges, also give a good upper bound for its value.

(a) \(\int_1^\infty \frac{6 + \cos x}{x^{0.99}} \, dx \)

For all \(x \geq 1 \), we have \(\frac{6 + \cos x}{x^{0.99}} \geq \frac{6 - 1}{x^{0.99}} = \frac{5}{x^{0.99}} \) because the minimum value of \(\cos x \) is \(-1\).

Since \(\int_1^\infty \frac{5}{x^{0.99}} \, dx \) diverges (compute yourself or notice that \(p = 0.99 < 1 \)), we know that the integral in question must diverge too.

(b) \(\int_1^\infty \frac{4x^3 - 2x^2}{2x^4 + x^5 + 1} \, dx \)

For all \(x \geq 1 \), we have \(\frac{4x^3 - 2x^2}{2x^4 + x^5 + 1} \leq \frac{4x^3}{x^2} = 4 \frac{x}{x^2} = 4 \frac{1}{x} \) (We’ve made the denominator smaller and the numerator larger, so the new fraction is larger.)

\[4 \int_1^\infty \frac{dx}{x^2} = 4 \lim_{t \to \infty} \int_1^t \frac{dx}{x^2} = 4 \lim_{t \to \infty} \frac{-1}{x} \bigg|_1^t = 4 \lim_{t \to \infty} \frac{-1}{t} - \frac{-1}{1} = 4[0 - (-1)] = 4 \]

Therefore, the original integral in question must converge to a value less than 4.
(c) \(\int_0^1 \frac{9}{\sqrt{x^4 + x}} \, dx \)

For \(0 < x \leq 1 \), we have \(\frac{9}{\sqrt{x^4 + x}} \leq \frac{9}{\sqrt{x}} = 9 \frac{1}{x^{1/2}} \). (We’ve made the denominator smaller, so the new fraction is larger.)

\[
9 \int_0^1 \frac{dx}{x^{1/2}} = 9 \lim_{t \to 0^+} \int_t^1 x^{-1/2} \, dx = 9 \lim_{t \to 0^+} \left[\frac{1}{2} t^{1/2} \right]_t^1 = 9(2 - 0) = 18
\]

Therefore, the original integral in question must converge to a value less than 18.

5. The probability density function (pdf) of the length (in minutes) of phone calls on a wireless network is given by \(f(x) = ke^{-0.2x} \) where \(x \) is the number of minutes. Note that the domain is \(x \geq 0 \) since we can’t have a negative number of minutes.

(a) **What must be the value of \(k \)?**

We know that the total area under any pdf must be 1 (because it must account for 100% of events.)

\[
\int_0^\infty ke^{-0.2x} \, dx = \lim_{t \to \infty} \int_0^t ke^{-0.2x} \, dx = \lim_{t \to \infty} \left[\frac{ke^{-0.2x}}{-0.2} \right]_0^t = \lim_{t \to \infty} \left(ke^{-0.2t} \right) - \left(\frac{k}{-0.2} \right) = 0 - \frac{k}{-0.2} = \frac{5k}{1}
\]

So, we have \(5k = 1 \) or \(k = 0.2 \).

(b) **What fraction of calls last more than 3 minutes?**

\[
\int_3^\infty 0.2e^{-0.2x} \, dx = \lim_{t \to \infty} \int_3^t 0.2e^{-0.2x} \, dx = \lim_{t \to \infty} \left[\frac{0.2e^{-0.2x}}{-0.2} \right]_3^t = \lim_{t \to \infty} \left(-e^{-0.2t} + (-e^{-0.6}) \right) = 0 + e^{-0.6} = e^{-0.6} \approx 0.5488
\]

Note that we could instead have computed \(1 - \int_0^3 0.2e^{-0.2x} \, dx \) and gotten the same answer.