Here are some facts:

Let \(A = \begin{bmatrix}
 -4 & -8 & -16 & 8 & -10 & -14 \\
 6 & 19 & 31 & 16 & 26 & 20 \\
 5 & 16 & 26 & 14 & 20 & 7 \\
 3 & 10 & 16 & 10 & 17 & 26 \\
\end{bmatrix} \), and let

\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
\end{bmatrix}, \quad
\begin{bmatrix}
 30 \\
 37 \\
 0 \\
 79 \\
\end{bmatrix}, \quad
\begin{bmatrix}
 3 \\
 4 \\
 -7 \\
 3 \\
\end{bmatrix}, \quad \begin{bmatrix}
 -13 \\
 24 \\
 4 \\
 3 \\
\end{bmatrix}
\]

Let the columns of \(A \) be \(c_1 \ldots c_6 \), and let the columns of \(\text{rref}(A) \) be \(k_1 \ldots k_6 \). Let \(R = \text{rref}(A) \).

Fact 1. The \(\text{rref} \) of \([A \mid I_4] \) is

\[
\begin{bmatrix}
 1 & 0 & 2 & -10 & 0 & 7 & 0 & 8 & -7 & -4 \\
 0 & 1 & 1 & 4 & 0 & -8 & 0 & -25/9 & 8/3 & 10/9 \\
 0 & 0 & 0 & 0 & 1 & 5 & 0 & 2/9 & -1/3 & 1/9 \\
 0 & 0 & 0 & 0 & 0 & 1 & 12 & -10 & -6 \\
\end{bmatrix}
\]

Fact 2. The matrix product

\[
\begin{bmatrix}
 -4 & -8 & -16 & 8 & -10 & -14 \\
 6 & 19 & 31 & 16 & 26 & 20 \\
 5 & 16 & 26 & 14 & 20 & 7 \\
 3 & 10 & 16 & 10 & 17 & 26 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 30 \\
 37 \\
 0 \\
 79 \\
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
 102 & -10 & 0 & 7 & 0 & 8 & -7 & -4 \\
 24 & 4 & -7 & 0 & 37 \\
 3 & 3 & 0 & 0 & 79 \\
 -25 & 2 & 5 & 3 \\
\end{bmatrix}
\]

Fact 3. Finally, the \(\text{rref} \) of

\[
\begin{bmatrix}
 -4 & -8 & -16 & 8 & -10 & -14 & 30 \\
 6 & 19 & 31 & 16 & 26 & 20 & 37 \\
 5 & 16 & 26 & 14 & 20 & 7 & 0 \\
 3 & 10 & 16 & 10 & 17 & 26 & 79 \\
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
 1 & 0 & 2 & -10 & 0 & 7 & -20 \\
 0 & 1 & 1 & 4 & 0 & -8 & -15 \\
 0 & 0 & 0 & 0 & 1 & 5 & 17 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

The first question is here:

1. What does it mean (ie, what’s the definition) for a set \(B \) of vectors \(\{v_1 \ldots v_p\} \) to be a basis of a subspace \(H \) of a vector space.

 \[\text{The set } B \text{ must...} \]
 \[(1) \text{ span } H \]
 \[(2) \text{ be a L.I. set} \]
2. Let \(A, b, u, v, \) and \(w \) be as on page one of this Quiz.

(2A) What conditions, if any, do the entries \(b_1, \ldots, b_4 \) of \(b \) have to satisfy in order for \(b \) to be in \(\text{Col}(A) \)?

From fact 1, we see
\[
0 = b_1 + 12b_2 - 10b_3 - 6b_4
\]

(2B) Verify that \(u \) is in \(\text{Col}(A) \) according to the conditions in (2A).

\[
\begin{bmatrix}
20 \\
37 \\
0 \\
29
\end{bmatrix}
\]

\(\text{does } 0 = 30 + 12 \cdot 37 - 10 \cdot 0 - 6 \cdot 29 \) ?

\(= 30 + 444 - 474 = 434 - 474 = 0 \checkmark \)

(2C) Is \(k_1 \) in \(\text{Col}(A) \)? Explain.

\(k_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \) is not in \(\text{Col}(A) \) bec it does not satisfy the conditions found in (2A)

(2D) Are any column vectors of \(A \) in the column space of \(R \)? Explain.

\(\text{NO} \) The only \(\text{O}'s \) in \(R \) tell us that any \(\text{LC} \) of the column vectors of \(R \)
will have the form \(\begin{bmatrix} k \\ k \\ k \\ k \end{bmatrix} \), yet none of the column vectors of \(A \) have this form; their
fourth entries are non-zero.

(2E) Which column vectors of \(A \) form a basis of \(\text{Col}(A) \)? (write your answer in terms of the \(c_i \)'s)

\(\vec{c}_1, \vec{c}_2, \vec{c}_3 \)

(2F) Express \(u \) as a linear combination (LC) of the basis vectors in (2E).

\(\text{write your answer in terms of the } c_i \text{'s, eg } 3c_2 + 4c_5 \)"

\(\text{Fact 3 shows that } -20\vec{c}_1 - 15\vec{c}_2 + 7\vec{c}_5 = \hat{u} \)

(2G) What LC is \(3c_1 + 4c_2 - 7c_3 + 3c_4 + 2c_5 + 3c_6 \) and how did you find it? (eg, "I used fact 7" or "I used my calculator
to compute..." or "I computed [give the expression] by hand", etc)

\(\text{Fact 2 shows } A \begin{bmatrix} 3 \\ 4 \\ -7 \\ 37 \\ 0 \\ 29 \end{bmatrix} = \begin{bmatrix} 30 \\ 37 \\ 0 \\ 0 \\ 9 \end{bmatrix} = \hat{u}. \)

(2H) What LC is \(-13c_1 + 24c_2 + 4c_3 + 3c_4 - 25c_5 + 5c_6 \) and how did you find it?

\(\text{Fact 2 shows } A \begin{bmatrix} -11 \\ -24 \\ -7 \\ -24 \\ -4 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \)

(2I) Does the result of (2H) say that \(w \) is or is not in \(\text{Nul}(A) \)? Since \(2H \) shows \(A\hat{w} = 0 \), we have \(\hat{w} \in \text{Nul}(A) \).

(2J) Find a basis for \(\text{Nul}(A) \). The row reduction in fact 1 is useful here:

\(x_1 = -2x_2 + 10x_4 - 7x_6 \)
\(x_2 = -x_3 + 4x_4 + 8x_6 \)
\(x_3 \text{ is free} \)
\(x_4 \text{ is free} \)
\(x_5 = -5x_6 \)
\(x_6 \text{ is free} \)

So \(\text{Nul}(A) \) is all \(\text{LC's of} \begin{bmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \), that is, then
3 vectors form
a basis \(\text{Nul}(A) \).

(2K) Express \(w \) as a LC of the basis vectors from (2J)

See the 1st page (not enough room here)