INTEGRATION TIPS

- Substitution: usually let \(u \) = a function that’s “inside” another function, especially if \(du \) (possibly off by a multiplying constant) is also present in the integrand.

- Parts: \(\int u \, dv = uv - \int v \, du \) or \(\int uv' \, dx = uv - \int u'v \, dx \)

How to choose which part is \(u \)? Let \(u \) be the part that is higher up in the LIATE mnemonic below.

(Logarithms (such as \(\ln x \))
Inverse trig (such as \(\arctan x, \arcsin x \))
Algebraic (such as \(x, x^2, x^3 + 4 \))
Trig (such as \(\sin x, \cos 2x \))
Exponentials (such as \(e^x, e^{3x} \))

- Rational Functions (one polynomial divided by another): if the degree of the numerator is greater than or equal to the degree of the denominator, do long division then integrate the result.

Partial Fractions: here’s an illustrative example of the setup.

\[
\frac{3x^2 + 11}{(x + 1)(x - 3)^2(x^2 + 5)} = \frac{A}{x + 1} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} + \frac{Dx + E}{x^2 + 5}
\]

Each linear term in the denominator on the left gets a constant above it on the right; the squared linear factor \((x - 3)\) on the left appears twice on the right, once to the second power. Each irreducible quadratic term on the left gets a linear term \((Dx + E)\) above it on the right.

- Trigonometric Substitutions: some suggested substitutions and useful formulae follow.

<table>
<thead>
<tr>
<th>Radical Form</th>
<th>(\sqrt{a^2 - x^2})</th>
<th>(\sqrt{a^2 + x^2})</th>
<th>(\sqrt{x^2 - a^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>(x = a \sin t)</td>
<td>(x = a \tan t)</td>
<td>(x = a \sec t)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\sin^2 x + \cos^2 x &= 1 \\
\sin^2 x &= \frac{1}{2} - \frac{\cos(2x)}{2} \\
\sin(2x) &= 2 \sin x \cos x
\end{align*}
\]

\[
\begin{align*}
\tan^2 x + 1 &= \sec^2 x \\
\cos^2 x &= \frac{1}{2} + \frac{\cos(2x)}{2}
\end{align*}
\]

- Powers of Trigonometric Functions: here are some strategies for dealing with these.

<table>
<thead>
<tr>
<th>(\int \sin^m x \cos^n x , dx)</th>
<th>Possible Strategy</th>
<th>Identity to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) odd</td>
<td>Break off one factor of (\sin x) and substitute (u = \cos x).</td>
<td>(\sin^2 x = 1 - \cos^2 x)</td>
</tr>
<tr>
<td>(n) odd</td>
<td>Break off one factor of (\cos x) and substitute (u = \sin x).</td>
<td>(\cos^2 x = 1 - \sin^2 x)</td>
</tr>
<tr>
<td>(m) even AND (n) even</td>
<td>Use (\sin^2 x + \cos^2 x = 1) to reduce to only powers of (\sin x) or only powers of (\cos x), then use table of integrals #39–42 or identities shown to right of this box.</td>
<td>(\sin^2 x = \frac{1}{2} - \frac{\cos(2x)}{2})</td>
</tr>
</tbody>
</table>
\[\int \tan^m x \sec^n x \, dx \quad \text{Possible Strategy} \quad \text{Identity to Use} \]

\(m \) odd	Break off one factor of \(\sec x \tan x \) and substitute \(u = \sec x \).	\(\tan^2 x = \sec^2 x - 1 \)
\(n \) even	Break off one factor of \(\sec^2 x \) and substitute \(u = \tan x \).	\(\sec^2 x = \tan^2 x + 1 \)
\(m \) even AND \(n \) odd	Use identity at right to reduce to powers of \(\sec x \) alone. Then use table of integrals #51 or integration by parts.	\(\tan^2 x = \sec^2 x - 1 \)

Useful Trigonometric Derivatives and Antiderivatives

\[\frac{d}{dx} \tan x = \sec^2 x \quad \frac{d}{dx} \sec x = \sec x \tan x \quad \int \sec x \, dx = \ln |\sec x + \tan x| + C \]

- Improper integrals: look for \(\infty \) as one of the limits of integration; look for functions that have a vertical asymptote in the interval of integration. It may be useful to know the following limits.

\[\lim_{x \to \infty} e^x = \infty \]
\[\lim_{x \to \infty} e^{-x} = 0 \]
Note: this is the same as \(\lim_{x \to -\infty} e^x \)

\[\lim_{x \to \infty} \frac{1}{x} = 0 \]
Note: the answer is the same for \(\lim_{x \to \infty} \frac{1}{x^2} \) and similar functions

\[\lim_{x \to -0^+} \frac{1}{x} = -\infty \]
Note: the answer is the same for \(\lim_{x \to 0^-} \frac{1}{x^2} \) and similar functions

\[\lim_{x \to \infty} \ln x = \infty \]
\[\lim_{x \to -0^+} \ln x = -\infty \]

1. Evaluate the following.

(a) \(\int \sin^6 x \cos^3 x \, dx \)

(b) \(\int \frac{dx}{\sqrt{100 + x^2}} \)
(c) \[\int_3^\infty \frac{1}{x(\ln x)^{100}} \, dx \]

(d) \[\int_0^\infty xe^{-2x} \, dx \]

(e) \[\int \frac{3x^2 + 2x - 13}{(x - 3)(x^2 + 1)} \, dx \]

(f) \[\int \frac{4x^3 - 27x^2 + 20x - 17}{x - 6} \, dx \]

(g) \[\int_{-1}^5 \frac{1}{(x - 1)^6} \, dx \]
2. Find the second-order Taylor polynomial for \(f(x) = \sqrt{x} \) based at \(x_0 = 100 \). Then use your polynomial to estimate \(\sqrt{105} \).

3. What is the largest possible error that could have occurred in your estimate of \(\sqrt{105} \)?

4. Use comparisons to show whether each of the following converges or diverges. If an integral converges, also give a good upper bound for its value.

 (a) \(\int_{1}^{\infty} \frac{6 + \cos x}{x^{0.99}} \, dx \)

 (b) \(\int_{1}^{\infty} \frac{4x^3 - 2x^2}{2x^4 + x^5 + 1} \, dx \)

5. The probability density function (pdf) of the length (in minutes) of phone calls on a wireless network is given by \(f(x) = ke^{-0.2x} \) where \(x \) is the number of minutes. Note that the domain is \(x \geq 0 \) since we can’t have a negative number of minutes.

 (a) What must be the value of \(k \)?

 (b) What fraction of calls last more than 3 minutes?