1. The consumption matrix C for an economy with three sectors G, H and M and the final demand vector d of the open sector are
$$C = \begin{bmatrix}
0.02 & 0.1 & 0.01 \\
0.01 & 0.2 & 0.05 \\
0.03 & 0.4 & 0.07
\end{bmatrix} \quad \text{and} \quad d = \begin{bmatrix}
400 \\
500 \\
600
\end{bmatrix},$$
respectively.

1A) Find x, the vector showing the total numbers of units of goods produced by the three sectors G, H and M. Show all your work and your answer rounded to TWO digits after the decimal point.

1B) Each unit produced by H requires how many units of G’s product?

1C) Of the total number of units produced by M, how many are consumed by H?

2. Let $C = \begin{bmatrix}
2 & 1 & 3 & 4 & 1 \\
4 & 3 & 5 & 6 & 7 \\
-8 & -1 & -15 & -22 & 14
\end{bmatrix}$, then the RREF of C is
$$\begin{bmatrix}
1 & 0 & 2 & 3 & 0 \\
0 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}.$$ Label the columns of C as c_1, c_2,

2A) Find a basis for $\text{Col}(C)$. Don’t write the vectors out; use the names c_1, etc.

2B) Find the sum s of the last three column vectors of C. Now, s must be in $\text{Col}(C)$. Indeed, express s as a LC of the basis vectors from part 2A. Show any matrices (augmented, RREF’ed, etc) involved in your work.