Read all of the following information before starting the exam:

- Show all work, clearly and in order if you want to get full credit (matrices can be reduced into RREF with calculator without showing steps). I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).

- Circle or otherwise indicate your final answers.

- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements. Put a smiley face next to your name for one point.

- This test has 8 problems and is worth 100 points, It is your responsibility to make sure that you have all of the pages!

- Good luck!
1. *(13 points) Consider the system of equations:

\[
\begin{align*}
 x + 6y + 2z - 5u - 2v &= -4 \\
 2x - 8u - v &= 3 \\
 v &= 7
\end{align*}
\]

a. *(5 pts) Write the system as a matrix equation.

b. *(8 pts) Solve the system and use vector parameter form for your solution.

2. *(10 points) Consider the vectors \(\vec{u}, \vec{v}, \vec{w} \) as labelled on the graph.
 a. *(5 pts) Sketch and label \(2\vec{u} \) and \(\vec{v} + \vec{w} \).

 ![Diagram with vectors \(\vec{u}, \vec{v}, \vec{w} \)]

 b. *(5 pts) Describe, geometrically and in words, the space \(\text{Span}\{\vec{u}, \vec{v}, \vec{w}\} \).
3. (20 points)
 a. (3 pts) Give the definition of what it means for the set of vectors \(S = \{ \vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n \} \) to be linearly independent. (Don't tell me the method you would use to SHOW they are linear independent. I am looking for the definition.)

 Now, suppose \(S = \{ \vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4 \} \) be the columns vectors of \(A = \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 2 & 4 & -1 & 3 \\
 1 & -2 & 1 & 1 \\
 -2 & -1 & 1 & -3 \\
\end{bmatrix} \)

 b. (5 pts) Find all solutions of \(A \vec{z} = \vec{0} \). Hint: \(RREF(A) = \begin{bmatrix}
 1 & 0 & 0 & 4/3 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -1/3 \\
 0 & 0 & 0 & 0 \\
\end{bmatrix} \)

 c. (4 pts) Express \(\vec{0} \) as a linear combination of the columns of \(A \) where the scalar associated with \(\vec{x}_3 \) is one or explain why this is impossible.

 d. (5 pts) Express \(\vec{x}_3 \) as a linear combination of the other columns or explain why this is impossible.

 e. (3 pts) Given some vector \(b \in \mathbb{R}^4 \), can you always solve \(A \vec{z} = \vec{b} \)? Explain.
4. (12 points) One way to see if a linear transformation $T(\vec{x}) = A\vec{x}$ is one-to-one is to check which vectors \vec{x} in the domain are mapped to the zero vector, $\vec{0}$ (i.e. find all \vec{x} such that $T(\vec{x}) = A\vec{x} = \vec{0}$.) We know $\vec{x} = \vec{0}$ will work, but there may be more in which case T is not one-to-one.

a. (6 pts) Find an example of a non-trivial (not the zero matrix) linear transformation that maps a non-zero vector to the zero vector. Give a matrix, A, and a vector, \vec{x}, and show how A maps your chosen \vec{x} to the zero vector.

b. (6 pts) A linear transformation T is one-to-one if and only if the ONLY vector that T maps to $\vec{0}$ is $\vec{x} = \vec{0}$ (i.e. only the trivial solution). Explain why if $T(\vec{x}) = \vec{0}$ has a unique solution, $\vec{x} = \vec{0}$, then T is one-to-one.

5. (15 points) T is a linear transformation. $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$.

a. (8 pts) Can T be one-to-one? Can T be onto? Explain.

b. (7 pts) $T(\vec{e}_1) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $T(\begin{bmatrix} -1 \\ 1 \end{bmatrix}) = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$. Find $T(\begin{bmatrix} 3 \\ 2 \end{bmatrix})$.

6. (10 points) True or False. No explanation necessary.
 • ___ Every elementary row operation is invertible.
 • ___ When \vec{u} and \vec{v} are nonzero vectors, $\text{Span}\{\vec{u}, \vec{v}\}$ contains the line through \vec{u} and the origin.
 • ___ Whenever a system has free variables, the solutions set contains many solutions.
 • ___ The columns of a 4×2 matrix always span \mathbb{R}^2.
 • ___ My favorite theorem used to be Theorem 4, but now it is the Invertible Matrix Theorem.

7. (10 points) Given A is an $m \times n$ matrix and B is an $r \times t$ matrix.

 a. (2 pts) Explain what must be true of m, n, r and t for AB to exist.

 b. (2 pts) Explain what must be true of m, n, r and t for BA to exist.

 c. (4 pts) Explain what must be true of m and n for A^2 to exist. What about for A^T to exist?

 d. (2 pts) Suppose $T(\vec{x}) = A\vec{x}$. T maps $\mathbb{R}^2 \rightarrow \mathbb{R}^r$. What is λ and what is λ.

8. (10 points) Find all $a, b, c \in \mathbb{R}$ ($a, b, c \neq 0$) for which the matrix $A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$ solves the equation $A^2 - a \cdot A^T = I_2$ where I_2 is the 2×2 identity matrix.