DO NOT WRITE HERE!

1

2

3

4

5

6

7

TOTAL

Read the questions CAREFULLY.

Show your work in the space provided.

Make clear what your answers are.

BE NEAT.

Good Luck!
1. Suppose that $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a transformation. Then we say T is a linear transformation if T satisfies what two conditions? (Note: in addition to a couple equalities, your conditions will include the words “for all” in appropriate places).

- $T(\vec{u}) + T(\vec{v}) = T(\vec{u} + \vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^n.
- $c T(\vec{u}) = T(c \vec{u})$ for all scalars $c \in \mathbb{R}$ and vectors $\vec{u} \in \mathbb{R}^n$.

2. Define $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by $T \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 3x_1x_2 \\ x_2 + 4x_3 \\ x_1x_2x_3 \end{bmatrix}$.

(2A) Use the vectors $\vec{u} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$ and scalar $c = 10$ to illustrate whether T does or does not satisfy the two conditions in problem (1).

- $T(\vec{u}) + T(\vec{v}) = \begin{bmatrix} 3 \end{bmatrix} + \begin{bmatrix} 12 \end{bmatrix} = \begin{bmatrix} 15 \end{bmatrix}$
- While $T(\vec{u} + \vec{v}) = T \left(\begin{bmatrix} 5 \\ 4 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 60 \\ 24 \\ 100 \end{bmatrix}$. Since $\begin{bmatrix} 15 \\ 24 \\ 18 \end{bmatrix} \neq \begin{bmatrix} 60 \\ 24 \\ 100 \end{bmatrix}$, condition 1 is not satisfied.

- $c T(\vec{u}) = 10 \begin{bmatrix} 3 \end{bmatrix} = \begin{bmatrix} 90 \end{bmatrix}$
- While $T(c \vec{u}) = T \left(\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \right) = T \left(\begin{bmatrix} 10 \\ 30 \\ 20 \end{bmatrix} \right) = \begin{bmatrix} 900 \\ 110 \\ 6000 \end{bmatrix}$
- Since $\begin{bmatrix} 90 \\ 110 \\ 600 \end{bmatrix} \neq \begin{bmatrix} 900 \\ 110 \\ 6000 \end{bmatrix}$, T fails to satisfy the second condition.

(Or you could also show that $10 T(\vec{v}) \neq T(10 \vec{v})$)

(2B) Do your results in 2A say T is not a linear transformation or do they support the conclusion that T is a linear transformation?

Because T doesn't satisfy either condition, T is not a linear transformation.

(And in fact, because it fails even one condition, T is NOT a L.T.)
3. Suppose that T is a linear transformation defined by $T(x) = Ax$ where A is the matrix

\[
\begin{bmatrix}
10 & 8 & 0 \\
7 & 5 & 3 \\
5 & 4 & 0 \\
3 & 6 & -18
\end{bmatrix}
\]

(3A) What are the domain and codomain, respectively, for this T?

The domain is ... \mathbb{R}^3

The codomain is ... \mathbb{R}^4

(3B) Find the image under T of the vector $\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$.

$$
T\left(\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}\right) = 3 \begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 13 \\ 10 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 3 \\ -18 \end{bmatrix} = \begin{bmatrix} 30 \\ 15 \\ 6 \end{bmatrix}
$$

(3C) Determine if the vector $\mathbf{u} = \begin{bmatrix} 9 \\ 8 \\ 4 \\ -6 \end{bmatrix}$ is in the range of T. If it is, find in parametric vector form all x for which $T(x) = \mathbf{u}$. But if \mathbf{u} is not in the range, explain why not. Show any RREF matrices used in making your conclusions.

The vector \mathbf{u} will be in the range of T if $Ax = \mathbf{u}$ has a soln.

The RREF of $A|\mathbf{u}$ is $\begin{bmatrix} 1 & 0 & 4 & 2 \frac{3}{2} \\ 0 & 1 & -5 & -2 \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$, and in particular, the 3rd row represents the eqn $0x_1 + 0x_2 + 0x_3 = 1$. So $Ax = \mathbf{u}$ is inconsistent system, i.e. it has no soln, and thus, $\mathbf{u} \notin$ range of T.

(3C) Determine if the vector $\mathbf{v} = \begin{bmatrix} 8 \\ 7 \\ 4 \\ -6 \end{bmatrix}$ is in the range of T. If it is, find in parametric vector form all x for which $T(x) = \mathbf{v}$. But if \mathbf{v} is not in the range, explain why not. Show any RREF matrices used in making your conclusions.

Here RREF of $(A|\mathbf{v})$ is $\begin{bmatrix} 1 & 0 & 4 & 2 \frac{3}{2} \\ 0 & 1 & -5 & -2 \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The system $Ax = \mathbf{v}$ is consistent, and there is a free variable.

We have that $T\mathbf{x} = \mathbf{v}$ where

$$
\mathbf{x} = \begin{bmatrix} 2 \frac{3}{2} \\ -2 \frac{3}{2} \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -4 \\ 5 \\ 1 \end{bmatrix} \text{ where } x_3 \text{ is free} \cdot
$$
4. Suppose that $S = \{v_1, v_2, \ldots, v_k\}$ is a set of vectors that belong to \mathbb{R}^j for some j. Give the correct definition of what it means to say S is a linearly independent set.

The set S is a linearly independent set \iff
the only solution to $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_k\vec{v}_k = \vec{0}$
is the trivial solution $x_1 = x_2 = \cdots = x_k = 0$.

5. In each part below, find a set S of vectors in \mathbb{R}^3 that satisfy the condition(s), or explain why there is no such set. (Three separate problems)

(5A) The set S is linearly independent, and contains exactly two different non-zero vectors.

One example

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

(5B) The set S is linearly dependent, and contains exactly three different non-zero vectors.

A common example

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \right\}$$

An easy example:

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

(5C) The set S has five vectors and is linearly independent.

This cannot occur. If $S = \{\vec{v}_1, \ldots, \vec{v}_5\}$ and each vector $\vec{v} \in \mathbb{R}^3$, then the corresponding matrix equation

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 \end{bmatrix} \vec{x} = \vec{0}$$

will have at least 2 free variables, since the matrix is 3×5, which means the equation $x_1\vec{v}_1 + \cdots + x_5\vec{v}_5 = \vec{0}$ will have (infinitely many) non-trivial solutions.
6. Let \(M = \begin{bmatrix} 1 & 1 & 3 & 7 & 4 \\ 3 & 1 & 4 & 4 & 3 \\ 5 & 2 & 10 & 2 & 4 \\ 4 & 2 & 13 & -7 & 1 \end{bmatrix} \). Let \(S = \{ c_1, c_2, \ldots, c_5 \} \) be the set of column vectors of \(M \).

Fact: the RREF of
\[
\begin{bmatrix}
1 & 1 & 3 & 7 & 4 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
is
\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 16 & 7 \\
0 & 0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

(6A) Use the fact to find conditions on \(b_1, \ldots, b_4 \) which guarantee that \(b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \) is in the span of the set \(S \).

The system of equations represented by \(M \mathbf{x} = \mathbf{b} \) will be consistent
if and only if \(0 = 6 \mathbf{b}_1 + 13 \mathbf{b}_2 - 12 \mathbf{b}_3 + 5 \mathbf{b}_4 \).

(6B) We know that each member of \(S \) is in the span of \(S \), and therefore the components of each member must satisfy the condition(s) you found in (6A). Indeed show that the components of \(c_4 \) satisfy your condition(s):

\[
\begin{bmatrix}
3 \\ 4 \\ 2 \\ -7 \\
\end{bmatrix}
\]

\[
\begin{align*}
due \quad 0 &= 7 + 13 \cdot 4 - 12 \cdot 2 + 5 \cdot (-7) \quad ? \\
\text{RHS} &= 7 + 52 - 24 - 35 \\
&= 59 - 59 \\
&= 0 \quad yes.
\end{align*}
\]

(6C) Use your condition(s) from 6A to find the value of \(b_3 \) for which \(b = \begin{bmatrix} 11 \\ 3 \\ b_3 \\ 2 \end{bmatrix} \) is in the span of the set \(S \).

\[
\begin{align*}
we \quad need \quad 0 &= 11 + 13 \cdot 3 - 12 \cdot b_3 + 5 \cdot 2 \\
\therefore \quad 12b_3 &= 11 + 39 + 10 = 60 \\
\frac{b_3}{12} &= \frac{60}{12} = 5
\end{align*}
\]
7. This problem uses the same \(M \) and \(S \) as the previous problem, and the information is copied here:

Let \(M = \begin{bmatrix} 1 & 1 & 3 & 7 & 4 \\ 3 & 1 & 4 & 4 & 3 \\ 5 & 2 & 10 & 2 & 4 \\ 4 & 2 & 13 & -7 & 1 \end{bmatrix} \). Let \(S = \{c_1, c_2, \ldots, c_5\} \) be the set of column vectors of \(M \).

Fact: the RREF of \(\begin{bmatrix} 1 & 1 & 3 & 7 & 4 & 1 & 0 & 0 & 0 \\ 3 & 1 & 4 & 4 & 3 & 0 & 1 & 0 & 0 \\ 5 & 2 & 10 & 2 & 4 & 0 & 0 & 1 & 0 \\ 4 & 2 & 13 & -7 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \) is \(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 6 & -5 & 2 \\ 0 & 1 & 0 & 16 & 7 & 0 & -25 & 23 & -10 \\ 0 & 0 & 1 & -3 & -1 & 0 & 2 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 13 & -12 & 5 \end{bmatrix} \).

7A) Which members of \(S \) can be expressed as linear combinations of the other vectors in \(S \)?

The RREF tells us that \(\vec{x} \) is a solution of \(\vec{M} \vec{x} = \vec{0} \) if and only if \(\begin{bmatrix} 0 \\ -16 \\ 3 \\ 1 \end{bmatrix} = x_4 \begin{bmatrix} 0 \\ -10 \end{bmatrix} + x_5 \begin{bmatrix} 7 \\ 1 \end{bmatrix} \) where \(x_4 \) and \(x_5 \) are free.

This in \(x_1 \vec{c}_1 + x_2 \vec{c}_2 + \cdots + x_5 \vec{c}_5 = \vec{0} \), it's possible to choose \(x_4 \) and/or \(x_5 \) in ways that cause \(x_2, x_3, x_4 \), and \(x_5 \) to be nonzero, and thus when \(x_i \neq 0 \) the corresponding \(\vec{c}_i \) can be solved for \(\vec{c}_i \), for \(i = 2, 3, 4, 5 \).

But since \(x_i = 0 \) in any solution \(\Rightarrow \), it's impossible to write \(\vec{c}_i \) as a L.C. of the other vectors.

7B) Find a way to express \(c_4 \) as a linear combination of \(c_2, c_3, \) and \(c_5 \), without using weights of 0, or explain why this is impossible.

Let's begin by finding a solution of \(\vec{0} \) in which none of \(x_4 \), \(x_2 \), \(x_3 \), and \(x_5 \) are 0.

Hopefully choosing \(x_4 = x_5 = 1 \) will do (at least this choice makes two of the weights nonzero.)

So: let \(x_4 = x_5 = 1 \). Then
\[
\begin{align*}
x_2 &= -16x_4 - 7x_5 = -16 - 7 = -23 \\
x_3 &= 3x_4 + x_5 = 3 + 1 = 4
\end{align*}
\]

Thus \(-23 \vec{c}_2 + 4 \vec{c}_3 + \vec{c}_4 + \vec{c}_5 = \vec{0} \).

Solving for \(\vec{c}_4 \) we find \(\vec{c}_4 = 23 \vec{c}_2 - 4 \vec{c}_3 - \vec{c}_5 \).

(Of course there are \(\infty \)-many ways to answer this question.)