1. Consider the function f shown above. Next to it, sketch the graph of $A_f(x) = \int_2^x f(t) \, dt$. Make sure the slopes on your graph are correct. (The curved portion of f is one-quarter of a circle of radius 1 centered at (5,0)).

2A. Use the method of substitution to find the following: $\int_0^1 \frac{e^{-2x}}{\sqrt{1 + e^{-2x}}} \, dx$. Show all your steps. Express the answer as a decimal number to four places after the decimal.

2B. Just to be clear: What are the new limits (written to four decimal places) on the integral after the substitution is made?
3. The region S below is bounded by the graphs of $y = 1 + \sqrt{x}$, $y = \frac{4}{5}(x - 4)$ and $x = 4$.

Hint: One of the following problems may require *two* separate integrals!

3A. Suppose the region S is rotated around the line $y = 10$. Set up the integral (or integrals) giving the exact volume of the resulting solid of revolution.

3B. Suppose the region S is rotated around the y axis. Set up the integral (or integrals) giving the exact volume of the resulting solid of revolution.
4. Suppose a trough shaped like the one to the right is filled with water to the one-foot mark. The trough measures 8 feet long, and cross sections are bounded by the graphs of $y = x^2$ and $y = 4$. Water weighs 62.4 pounds per cubic foot.

4A. In terms of y, what is the (approximate) volume of a thin sheet of water at a height of y_i feet up from the bottom of the tank and “thickness” $\triangle y$?

4B. In terms of y, what is the distance that sheet of water has to travel if the water is to be pumped to a point 15 feet above the top of the trough?

4C. What integral represents how much work is done against gravity in pumping out all the water to a point 15 feet above the top of the trough? (Just set it up; no need to evaluate it).
5A. Let I be the exact value of $\int_{a}^{b} f(x) \, dx$ where f is some continuous function on $[a, b]$. "Theorem 3" (from section 6.2) says that the error committed by MID(n) in approximating I, that is, $|I - \text{MID}(n)|$, is smaller than what expression? (Be sure to say what K_2 means in your answer).

5B. Now let $f(x) = \frac{1}{12}x^4 - \frac{2}{3}x^3 - 2x^2$; then $f'(x) = \frac{1}{3}x^3 - 2x^2 - 4x$ and $f''(x) = x^2 - 4x - 4$.

The exact value of $\int_{1}^{4} f(x) \, dx$ is $-1349/20 = -67.45$; you do not have to check this.

What is the smallest value of n for which theorem 3 guarantees $|I - \text{MID}(n)| < 0.0005$? Show your calculations. (Use the best possible K_2).

5C. For your value of n in the previous problem, what is MID(n) and how far is it from the exact value? Write both answers to six places after the decimal point.

MID(n) equals? the error is?

5D. What is TRAP(30) for this integral? Show any intermediate values needed to find TRAP(30).