Math 206 Test One

Name: ______________________

1. (5 marks, level of difficulty 5) Answer one of a. or b.

a. Prove that if \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \) is continuous at \(\vec{a} \) and \(f(\vec{a}) \neq b \) for some number \(b \), then there exists \(r > 0 \) such that \(f(\vec{x}) \neq b \) for all \(\vec{x} \in B_r(\vec{a}) \).

b. Use analysis to prove that \(\lim_{(x,y) \to (0,0)} \frac{y^2}{\sqrt{x^2+y^2}} = 0 \)
2. (5 marks, level of difficulty 1) Answer one of a. or b.

a. Identify $C = \{(x, y) : -5 < x < 5\} \subset \mathbb{R}^2$ as open, closed, or neither and find the boundary and complement.

b. Find (approximately) the maximum and minimum values of the function $h(x, y) = \sqrt{x^2 + y^2}$ on the set $S = \{(x, y) : x^2 + y^2 \leq 4\}$.
3. (5 marks, level of difficulty 2) Answer one of a. or b.

a. Show that \(f(x, y) = e^{x-y} \) is a solution to the partial differential equation \(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0 \).

b. Compute \(\frac{\partial}{\partial x} (xe^y) \) using the Definition of the partial derivative.
4. (5 marks, level of difficulty 3) Answer one of a. or b.

a. Calculate the Jacobian matrix for the function \(f(x, y) = 8x - 7y + 2 \) at the point \(\vec{a} = (-4, -5) \). Then write a formula for the total derivative.

b. Show that if \(f : U \subset \mathbb{R}^n \to \mathbb{R}^n \) is a linear transformation, then \((Df(\vec{a}))(\vec{x}) = f(\vec{x}) \).
5. (5 marks, level of difficulty 4) Answer one of a. or b.

a. Use the chain rule to find the derivative of \(\vec{g} \circ \vec{f} \) at the point \(\vec{a} = (3, 2) \) where \(\vec{g}(x, y) = (x^2y^3, 3x - y^2) \) and \(\vec{f}(x, y) = (-y, x) \).

b. Find \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) assuming that the equation \(x^3y^2z + xy - z^3 = 0 \) implicitly defines \(z \) as a function of \(x \) and \(y \).