1. The graph below is a graph of \(y = g''(x) \).

(a) On what interval(s) is \(g' \) decreasing? Justify your answer.

\[(1a) \quad (-\infty, -3) \text{ or } (-3, 2, -3)\]

\(g'' \) is negative valued the slope of \(g' \) is negative hence \(g' \) is decreasing

(b) For what \(x \)-value(s) does \(g \) have an inflection point? Justify your answer.

\[(1b) \quad x = -3\]

\(g \) has an inflection point when the concavity changes. The concavity of \(g \) changes when the sign of \(g'' \) changes. The only place that happens is at \(x = 3 \).

2. The graph below is a graph of \(y = f(x) \). Sketch a graph of \(f'(x) \).
3. Let \(h'(x) = \sqrt{x} - 3 \).

(a) Is \(h(x) \) increasing at \(x = 1 \)? Justify your answer.

\[
h'(1) = \sqrt{1} - 3 = -2
\]

(3a) \(\text{No} \) \(\because \) \(h'(1) \) is negative

The slope of \(h(x) \) at \(x=1 \) is negative hence \(h(x) \) is decreasing there.

(b) Is \(h(x) \) concave up at \(x = 4 \)? Justify your answer.

\[
\text{The slope of } h'(x) \text{ is positive at } x=4, \text{ so } h''(4) > 0, \text{ hence } h(x) \text{ is concave up.}
\]

(3b) \(\text{Yes} \)

(c) Why does \(h(x) \) have a stationary point at \(x = 9 \)?

\[
b/c \quad h'(9) = \sqrt{9} - 3 = 0
\]

(3c) \(\text{and stationary points are when } h'(x) = 0 \).

(d) Is the stationary point at \(x = 9 \) a local minimum, local maximum, or neither? Justify your answer.

(3d) \(\text{local minimum} \)

\[
b/c \quad h'(x) < 0 \text{ when } 0 < x < 9 \text{ so } h(x) \text{ is decreasing from } 0 \text{ to } 9
\]

and \(h'(x) > 0 \text{ when } 9 < x \text{ so } h(x) \text{ is increasing from } 9 \text{ to } \infty \).

Together this means \(h(x) \) has a local minimum at \(x = 9 \).