Math 106: Review for Exam I

1. Find the following. [Substitution tip: usually let \(u \) = a function that’s “inside” another function, especially if \(du \) (possibly off by a multiplying constant) is also present in the integrand.]

 (a) \(\int_1^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx \)

 (b) \(\int_{\pi}^{2\pi} \cos^7(5x) \sin(5x) \, dx \)

 (c) \(\int \frac{7x^2}{1 + x^6} \, dx \)

 (d) \(\int \cos^3(5x) \, dx \)

 (e) \(\int_6^{10} x\sqrt{10 - x} \, dx \)

2. If \(f(x) \) is decreasing and concave up, put the following quantities in ascending order.

 \(L_{100}, R_{100}, T_{100}, M_{100}, \int_a^b f(x) \, dx \)

 What can you say with certainty about where \(S_{200} \) would fit into your list above? [8:00 and 9:30 sections may omit this part.]
3. Suppose \(f(t) \) is the rate of change (in animals per month) of a population \(P(t) \).

(a) What does \(\int_{4}^{12} f(t) \, dt \) represent in this problem?

(b) Find the best possible left, right, midpoint, trapezoidal, and Simpson’s approximations to \(\int_{4}^{12} f(t) \, dt \) given the data in the table below. [8:00 and 9:30 sections may omit Simpson’s approximation.]

<table>
<thead>
<tr>
<th>(t)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

4. Find bounds for each of the following errors if \(I = \int_{2}^{7} \ln x \, dx \).

(a) \(|I - L_{100}|\)

(b) \(|I - T_{100}|\)

(c) \(|I - M_{100}|\)

5. Use Euler’s method with three steps on the differential equation \(\frac{dy}{dt} = y - t \) to estimate \(y(2.5) \) if \(y(1) = 0 \).

6. Solve the differential equation \(\frac{dy}{dx} = 2xy + 6x \) if the solution passes through \((0, 5)\).
7. Write integrals equal to

 (a) the arc length of \(y = x^2 \) on the interval \([1, 5]\)

 (b) the area bounded by \(y = x^2 - 8x + 24 \) and \(y = 3x \)

8. Consider the region bounded by \(y = \sqrt{x}, y = 0, \) and \(x = 9 \). Write an integral equal to the volume generated if this region is rotated about

 (a) the \(x \)-axis

 (b) the line \(x = -1 \)

9. A pyramid has a square base 30 feet to a side and a height of 10 feet. Write integrals equal to

 (a) the volume of the pyramid \([8:00 \text{ and } 9:30 \text{ sections may omit this part, though much of it will be repeated in part(b).}])

 (b) the work done in pumping all the fluid to a point 5 feet above the pyramid if the pyramid is filled to a height of 8 feet with water (62.4 pounds per cubic foot)