1. Let \(b \) and \(v_1, v_2, \ldots, v_n \) be vectors in \(\mathbb{R}^m \). Complete the following sentence so that it gives the definition of linear combination:

"We say \(b \) is a linear combination of the vectors \(v_1, v_2, \ldots, v_n \) if and only if..."

2. Let \(a_1 = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}, a_2 = \begin{bmatrix} 6 \\ 3 \\ -9 \end{bmatrix}, a_3 = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, a_4 = \begin{bmatrix} 10 \\ 4 \\ -4 \end{bmatrix}. \) Also, let \(b = \begin{bmatrix} 16 \\ 8 \\ 26 \end{bmatrix} \) and \(c = \begin{bmatrix} 26 \\ 8 \end{bmatrix} \).

2A. Is \(b \) in the span of \(\{ a_1, a_2, a_3, a_4 \} \)? Explain your answer. Show any matrices and corresponding rref’s you use.

2B. Let \(A \) be the matrix whose columns are \(a_1, a_2, a_3, a_4 \). Express all solutions of \(Ax = c \) in parametric vector form, that is, as \(p + v_h \) where \(p \) is a particular solution of \(Ax = c \) and \(v_h \) is all solutions of the corresponding homogeneous equation \(Ax = 0 \). Show any relevant matrices used in your work.

2C. Use your work in (2B) to find two nontrivial solutions \(s_1 \) and \(s_2 \) of \(Ax = 0 \). CIRCLE your answers.

2D. Now let \(T \) be the matrix whose columns are \(a_1, a_3, a_4 \) (so \(T \) looks like \(A \) if you take out \(A \)'s second column). What is \(v_h \) now? That is, what are the solutions of \(Tx = 0 \)?