MATH 105A,C - CALCULUS I
FALL 2010
QUIZ 2

NAME:

Show ALL your work CAREFULLY.

The graph of the derivative function F' is shown below over the interval $(0, 10)$.

![Graph of F'](image)

(a) For what values of x is the function F increasing?

The function F is increasing when F' is positive, i.e., for all x such that $0 < x < 1$ or $3 < x < 10$.

(b) Find, if any, all local maximum points of the function F.

At a local maximum, F' must change sign from positive to negative so F has a local max at $x = 1$.

(c) Find, if any, all local minimum points of the function F.

Similar to (b), F has a local min at $x = 3$ as F' changes sign from negative to positive.

(d) Find, if any, all inflection points of the function F.

At any inflection point, F'' must be 0. In addition F'' must change signs. Note that at $x = 2, 6, 9$, the slopes of F' are zero AND the slopes change signs so these are the inflection points of F.

(e) For what values of x is the function F concave up?

Date: September 24, 2010.
The function F is concave up when the second derivative F'' is positive, or equivalently, when the first derivative F' is increasing. From the graph of F', F' is increasing for $2 < x < 6$ and for $9 < x < 10$.

(f) Suppose that $F(3) = 1$. Arrange the following numbers $F(3), F''(7), F'(9), F(9)$ in increasing order. Justify your answer.

From the graph of F', we know that $F'(9) = 0$. $F''(7)$ is negative because it is the slope of the tangent to the graph of F' at $x = 7$. We know $F(3) = 1$, our assumption. Finally, $F(9) > F(3)$ since F is increasing over the interval $(3, 10)$ from part (a). Thus, we have in increasing order the numbers $F''(7), F'(9), F(3), F(9)$.

(g) Estimate the value $F''(4)$.

$F''(4)$ represents the slope of the line tangent to the graph of F' at $x = 4$. From the graph above, the graph over the interval $[3, 5]$ appears to be straight so we have $F''(4) \approx \frac{F'(5) - F'(3)}{5 - 3} = \frac{2 - 0}{5 - 3} = 1$.