1. What is the formula relating the dot product of two vectors \(\mathbf{u} \) and \(\mathbf{v} \) to their lengths and the angle \(\phi \) between them?

Consider the figure to the right. The vectors \(\mathbf{a} = (3, 1, 0) \) and \(\mathbf{b} = (2, 5, 0) \) are shown. Refer to this figure for all the remaining questions.

2. What is the value of \(\theta \) in degrees?

3. Find \(\mathbf{a} \times \mathbf{b} \).

4. Which way does \(-(\mathbf{a} \times \mathbf{b}) \) point (up or down)?

5. Keeping \(\mathbf{a} \) fixed and rotating \(\mathbf{b} \) away from \(\mathbf{a} \) (counterclockwise) while keeping \(\mathbf{b} \) in the \(xy \) plane and its length constant, what happens . . .

5a. . . . to \(\mathbf{a} \cdot \mathbf{b} \) as \(\theta \) increases towards \(\pi/2 \)? (Circle one of these choices or write in a better one:)
 - (1) \(\mathbf{a} \cdot \mathbf{b} \) increases towards \(\| \mathbf{a} \| \cdot \| \mathbf{b} \| \)
 - (2) \(\mathbf{a} \cdot \mathbf{b} \) decreases to 0
 - (3) \(\mathbf{a} \cdot \mathbf{b} \) remains constant

5b. . . . to \(\| \mathbf{a} \times \mathbf{b} \| \) as \(\theta \) increases towards \(\pi/2 \)? (Circle one of these choices or write in a better one:)
 - (1) \(\| \mathbf{a} \times \mathbf{b} \| \) increases towards \(\| \mathbf{a} \| \cdot \| \mathbf{b} \| \)
 - (2) \(\| \mathbf{a} \times \mathbf{b} \| \) decreases to 0
 - (3) \(\| \mathbf{a} \times \mathbf{b} \| \) remains constant

6. If \(\theta = \pi \), what are both \(\mathbf{a} \cdot \mathbf{b} \) and \(\mathbf{a} \times \mathbf{b} \)? (two separate questions).

\[\mathbf{a} \cdot \mathbf{b} = \]
\[\mathbf{a} \times \mathbf{b} = \]