1. What does it mean to say that a is a stationery point for a function f?

$$f'(a) = 0$$ (see note 2)

2. Fact: if $f'(x) < 0$ on an interval (s, t), then on that interval $f(x)$ is decreasing.

3. If a is a stationery point of f, then a is a local maximum point if f' changes from POSITIVE to NEGATIVE at a.

(Possible answers might be “CU to CD” or “CD to CU” or “positive to negative” or “decreasing to increasing”, etc).

4. An inflection point occurs at p if which function changes from increasing to decreasing at a: f, f', or f''? f''

5. Consider the following graph of the derivative of function $g(x)$; so you are given the graph of $g'(x)$ here. Answer the following questions.

1) On what interval(s) is $g(x)$ decreasing?
2) What are the stationary points of $g(x)$?
3) On what interval(s) is $g(x)$ concave up?
4) Does $g(x)$ have any local maximum points or minimum points? If so, list their x-coordinates and classify them (local min or local max).
5) Find all the inflection points of $g(x)$.
6) Make a rough sketch of g on the bottom graph starting at the dot given. Make sure it increases/decreases and is CD/CU where it should be; but you do not need to worry about the location of the x-axis.

Note 1: if you want to talk about tangent lines you need to say:

"The slope of the line tangent to the graph of f at $(a, f(a))$ is 0."

Note 2: we'll accept $(1, 5)$ also.