1. Sketch the graph of a function f for which $f(x) > 0$ and $f'(x) > 0$ for all x.

2. Sketch the graph of a function f for which $f(x) < 0$ and $f'(x) > 0$ for all x.

3. Let f be a function and x_0 a point in its domain and suppose that f' exists for all x in the domain of f. If x_0 is a local minimum point of f is it possible that $f'(x_0) > 0$?

4. Suppose that $f'(x_0) = 0$. Is it necessarily true that if x_0 is a local minimum point for f then $f'(x) < 0$ for $x < x_0$ and $f'(x) > 0$ for $x > x_0$?