1. Use the method of substitution to compute \(\int_{1}^{4} \frac{e^{1+\sqrt{x}}}{\sqrt{x}} \, dx \).

(You may either leave your answer simplified with \(e \)'s in it or you can give a decimal approximation.)

\[\int_{1}^{4} \frac{e^{1+\sqrt{x}}}{\sqrt{x}} \, dx \]

1. ________________

2. Let \(I = \int_{a}^{b} f(x) \, dx \), where \(f \) is positive and concave up over the interval \([a, b]\). Indicate whether, for all \(n \geq 1 \), the statement must be true, cannot be true, or may be true.

(a) \(R_n \leq I \)

(b) \(T_n \leq I \)
3. The graph below depicts the velocity of a bike (in mph). The distance traveled by the bike from time \(t = 1 \) to time \(t = 7 \) can be computed by calculating \(\int_{1}^{7} v(t) \, dt \).

Use the Trapezoid Rule with 4 intervals (i.e., \(n = 4 \)) to estimate the distance traveled from time \(t = 1 \) to time \(t = 7 \), i.e., to estimate \(\int_{1}^{7} v(t) \, dt \).