1. The graph below is a graph of \(y = f(x) \). Rank \(f'(0), f'(7), f'(11), f'(13) \) in increasing order.

\[f'(7), f'(11), f'(0), f'(13) \]

2. Consider the function \(g(x) = \frac{1}{1 - \sqrt{x}} \).

 (a) What is the domain of \(g(x) \)?

 \[[0, 1) \cup (1, \infty) \]

 (b) Is 1 the range of \(g(x) \)? Explain your answer.

 Yes

 B/c if \(x = 0 \) then

 \[g(0) = \frac{1}{1 - 0} = 1 \]

 so

 1 is a possible output.
3. Let \(h(x) = \log_b x \) where \(b > 1 \).

(a) What is the domain of \(h(x) \)?

\[\{x \mid x > 0 \} \]

(b) What is the range of \(h(x) \)?

all real \#s

(c) What are the root(s) of \(h(x) \)?

\[x = \frac{b}{c} \quad h(c) = 0 \]

(d) Is the graph of \(h(x) \) concave up or concave down?

concave down