1. Suppose that \(p(x) \) is a polynomial of degree 9. Is it possible that \(p(x) \leq 13 \) for all \(x \)? Why or why not?

 No, 9 is an odd number and polynomials of odd degree always have range \((-\infty, \infty)\).
 But if \(p(x) \leq 13 \) for all \(x \), then \(p(x) \) doesn't have range \((-\infty, \infty)\).

2. Give the domain of the following functions.

 (a) \(f(x) = x - 13 \)
 all real numbers

 (b) \(g(x) = (\sqrt{x - 13})^2 \)
 \(\forall x \mid x \geq 13 \) or \([13, \infty) \)
 (we can't take the square root of a negative number)

 (c) \(h(x) = \frac{x^2 - 169}{x + 13} \)
 \(\forall x \mid x \neq -13 \)
 or
 all real numbers except -13
 (we can't divide by 0)
3. Write a possible formula for \(f(x) \), the piecewise function graphed below.

\[
\begin{align*}
 f(x) &= \begin{cases}
 \sin x & \text{if } -2\pi \leq x < 0 \\
 \log_{13} x & \text{if } 0 < x
\end{cases}
\]

we know this is 13 because the point \((13,1)\) is on the graph.

4. Consider the graph of \(f(x) \) above. For which values of \(x \) is \(f(x) \) concave down?

\((-2\pi, -\pi) \text{ and } (0, \infty)\)