This page contains useful information for problem 1.

The Reduced Row Echelon Form (rref) of

\[
\begin{bmatrix}
2 & -4 & -4 & -2 & 6 \\
-1 & 2 & 2 & 1 & -3 \\
4 & -3 & 7 & 1 & 1 \\
1 & 1 & 7 & 2 & 4
\end{bmatrix}
\begin{bmatrix}
2 & 0 & 6 & 4 & 5 \\
-1 & 0 & -3 & -2 & 3 \\
1 & -1 & 5 & 7 & 5 \\
3 & 7 & -5 & 9 & 3
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
1 & 0 & 4 & 1 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1/2 & 1 & -1/2 & 3 & 0 \\
1/2 & 2 & -5/2 & 2 & 0 \\
1/2 & 1 & -1/2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The Reduced Row Echelon Form (rref) of

\[
\begin{bmatrix}
2 & 0 & 6 & 4 \\
-1 & 0 & -3 & -2 \\
1 & -1 & 5 & 7 \\
3 & 7 & -5 & 9
\end{bmatrix}
\begin{bmatrix}
2 & -4 & -4 & -2 & 6 \\
-1 & 2 & 2 & 1 & -3 \\
4 & -3 & 7 & 1 & 1 \\
1 & 1 & 7 & 2 & 4
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & -2 & -6 & -2 & 4 & 0 \\
-1/2 & 1 & 1/2 & -1/2 & 0 & 3/2 \\
1/2 & 0 & 2 & -1/2 & 0 & 1/2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

The RREF of the transpose of \(P \) in problem 1 is

\[
\begin{bmatrix}
1 & -1/2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
1. Use the sheet of Row-Reduced Matrices (page “A”) to help answer these questions. You shouldn’t need a calculator in any part of problem 1.

Let \(P = \begin{bmatrix} 2 & -4 & -4 & -2 & 6 \\ -1 & 2 & 2 & 1 & -3 \\ 4 & -3 & 7 & 1 & 1 \\ 1 & 1 & 7 & 2 & 4 \end{bmatrix} \) and \(Q = \begin{bmatrix} 2 & 0 & 6 & 4 \\ -1 & 0 & -3 & -2 \\ 1 & -1 & 5 & 7 \\ 3 & 7 & -5 & 9 \end{bmatrix} \).

Label the column vectors of \(P \) as \(p_1, \ldots, p_5 \), and those of \(Q \) as \(q_1, \ldots, q_4 \).

1A. Find a basis \(B \) for \(\text{Col}(P) \). Write your answer using the symbols \(p_1, \ldots, p_5 \) (don’t write out the actual column vectors).

1B. Find a basis \(C \) for \(\text{Col}(Q) \), using the symbols \(q_1, \ldots, q_4 \).

1C. Let \(v = \begin{bmatrix} 6 \\ -3 \\ 4 \\ 21 \end{bmatrix} \). Use the RREF sheet to completely solve \(P \mathbf{x} = \mathbf{v} \); write your answer in the “\(\mathbf{x} = \mathbf{p} + \mathbf{v}_h \)” notation.

1D. Find both \(\mathbf{v}_B \) and \(\mathbf{v}_C \); clearly identify which is which. This is not a change of basis problem.
(Problem 1 continues here)

1E. In terms of the symbols \(p_1, \ldots, p_5 \), and \(q_1, \ldots, q_4 \), what superaugmented matrix represents the problem of expressing each of the basis vectors in \(B \) as linear combinations (LC's) of those in \(C \)?

1F. Explicitly find the \text{rref} of the matrix in 1E. (The info you need is on the RREF sheet!)

1G. Explicitly give the change of basis matrix from \(B \) to \(C \).

1H. Use the \text{rref} of \(P \) to find a basis (call it \(D \)) for \(\text{Row}(P) \).

1I. Use \(P^T \) and its \text{rref} to find another basis (call this one \(E \)) for \(\text{Row}(P) \).
Problem 1 continues here.

1J. Let \(r_4 \) be the fourth row vector in \(P \). What is \([r_4]_D \)? What is \([r_4]_E \)? (Identify which answer is which).

1K. Find a basis for \(\text{Nul}(P) \).

1L. Find a basis for \(\text{Col}(P)^\perp \).
2. Let \(A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 2 \\ -1 & -1 & 4 \end{bmatrix} \)

2A. Find in factored form, the characteristic polynomial of \(A \).

2B. State the eigenvalues of \(A \) and their multiplicities.
3. Let \(C = \begin{bmatrix} 5 & 0 & -1 \\ 3 & 4 & -3 \\ 5 & 0 & -1 \end{bmatrix} \).

Facts: (1) \(C \) is not invertible (2) The vector \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) is an eigenvector of \(C \). (3) \(C \) is diagonalizable.

Find \(P \) and \(D \) such that \(P \) is invertible, \(D \) is diagonal, the columns of \(P \) are eigenvectors for \(C \), and \(C = PDP^{-1} \). Show all your work, including any matrices you require, both before and after row-reduction.
4. There is no parabola of the form \(\beta_2 x^2 + \beta_1 x + \beta_0 \) that contains all the points (3, 3), (2, 7), (0, 1) and (-1, 11). You do not need to verify this.

4A. Find the best-fit parabola of this form for these four points. Identify your design matrix, parameter vector, and observation vector. Show all your work.

4B. What are the four \(y \)-coordinates on the best-fit parabola corresponding to the \(x \) coordinates of the four points (3, 3), (2, 7), (0, 1) and (-1, 11)?

4C. What is the distance from the vector \(y = \begin{bmatrix} 3 \\ 7 \\ 1 \\ 11 \end{bmatrix} \) to the column space of the matrix \(\begin{bmatrix} 9 & 3 & 1 \\ 4 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \)?

4D. How does the answer to 4C relate to the points (3, 3), (2, 7), (0, 1) and (-1, 11) and the best-fit parabola from 4A?
5. Let F be the vector space of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. Let H be the subset of all members of F which have a non-negative y-intercept. (The y-intercept of a function f is the y-coordinate where the graph of f crosses the y-axis).

For each part of the definition of subspace, show the H satisfies that part (give a proof) or give an explicit counterexample that H does not satisfy that part.
6. Define what it means for a set of vectors $S = \{v_1, \ldots, v_p\}$ to be *linearly independent*.

7. Define what it means for a transformation T from \mathbb{R}^k to \mathbb{R}^j to be a *linear* transformation.

8. Suppose P in problem 1 is the matrix of a Linear Transformation $T : \mathbb{R}^k \to \mathbb{R}^j$.
 8A. What are k and j?

 $k = \quad j =$

 8B. Is T a one-to-one linear transformation? Explain.

 8C. Is T onto \mathbb{R}^j? Explain.