1. You are standing on a pier, 6 feet above the deck of a boat. Attached to the boat is a line, which you are pulling in at a rate of 3 feet per second. When there are 10 feet of line between your hand and the boat, at what rate is the boat moving across the water?

2. You are watching a plane flying toward your position at a constant height of 3 miles and a speed of 500 miles per hour relative to the ground. At the moment when the plane is 5 miles from you (diagonally), at what rate is the angle of your vision toward the plane changing?
3. Use the Intermediate Value Theorem to show that \(f(x) = x^3 - 2x - 1 \) has a root on \([1, 2]\).

4. What (if anything) does the Extreme Value Theorem say about \(f(x) = x^2 \) on each of the following intervals?
 (a) \([1, 4]\)
 (b) \((1, 4)\)

5. Find the value of the constant \(c \) that the Mean Value Theorem specifies for \(f(x) = x^3 + x \) on \([0, 3]\).

6. Water is leaking out of a tank at a decreasing rate \(r(t) \) as shown in the table below.

<table>
<thead>
<tr>
<th>time (min)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate (gal/min)</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

 (a) Find an overestimate and underestimate for the total amount that leaked out during these 8 minutes.

 (b) Interpret the expression \(\int_{2}^{6} r(t) \, dt \) in terms of the situation described above.
7. Consider the graph of \(f(t) \) shown. It is made of straight lines and a semicircle.

Let \(G(x) = \int_{0}^{x} f(t) \, dt \) and \(H(x) = \int_{-3}^{x} f(t) \, dt \).

(a) Compute \(G(2) \), \(G(4) \), \(G(-4) \), and \(H(4) \).

(b) Where is \(G \) increasing? Where is \(G \) decreasing?

(c) Where is \(G \) concave up? Where is \(G \) concave down?

(d) At what \(x \)-value(s) does \(G \) have a local maximum? At what \(x \)-value(s) does \(G \) have a local minimum?

(e) Find a formula that relates \(G \) and \(H \).

(f) How would your answers to (b), (c), and (d) change if the questions were about \(H \) instead of \(G \)?

8. (a) Use sigma notation to express \(L_{10} \) and \(M_{10} \) as approximations to \(\int_{20}^{60} \ln x \, dx \).

(b) Draw a sketch that represents the sum \(M_{4} \).
9. Find the following.

(a) all antiderivatives of \(1 + 2x + x^3 + 4\sqrt{x} + \frac{1}{x^5} + \sec^2(6x) + \frac{7}{1 + 100x^2} \)

(b) \(\int_{-2}^{2} \sqrt{4 - x^2} \, dx \)

(c) \(\frac{d}{dx} \int_{1}^{x} \sin \sqrt{t} \, dt \)

(d) \(\int_{0}^{2} x^2 \, dx \)