Math 205A Final Exam (65 points)

Name: Solutions

- Check that you have 7 questions on four pages.
- Show all your work to receive full credit for a problem.

1. (7 points) Let A be a 4×3 matrix, B be a 3×4 matrix and C be a 4×4 matrix, with $\det(AB) = 2$ and $\det C = -10$.

 (a) Find $\det ABC$. Is ABC an invertible matrix? Explain.

 \[
 \det(ABC) = (\det AB)(\det C) = 2(-10) = -20
 \]

 \[
 \det(ABC) \neq 0
 \]

 So ABC is an invertible matrix.

(b) Find $\det B^T A^T$. Explain.

\[
\det(B^T A^T) = (\det B^T)(\det A^T)
\]

\[
= (\det B)(\det A)
\]

But we don't know $\det B$ and $\det A$.

So let's try something else.

\[
\det(B^T A^T) = \det(AB)^T = \det(AB) = 2
\]
2. (12 points) Let \(\vec{y} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \vec{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \) and \(\vec{u}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \). Let \(W = \text{Span}\{\vec{u}_1, \vec{u}_2\} \).

(a) Is \(\{\vec{u}_1, \vec{u}_2\} \) an orthogonal basis for \(W \)? Explain.

\[\vec{u}_1 \cdot \vec{u}_2 = 0 \cdot 1 - 1 = -1 \]

So \(\{\vec{u}_1, \vec{u}_2\} \) is an orthogonal set.

It is an orthogonal set of non-zero vectors and hence it is linearly independent.

It also spans \(W \).

Thus, it is an orthogonal basis for \(W \).

(b) Compute the distance from \(\vec{y} \) to \(W \).

\[
\hat{\vec{z}} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2
\]

\[
= \frac{4 + 4 + 0}{4 + 1 + 1} \vec{u}_1 + \frac{0 + 4 + 0}{0 + 1 + 1} \vec{u}_2 = \frac{8}{6} \vec{u}_1 + \frac{4}{2} \vec{u}_2
\]

\[
= \frac{4}{3} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 8/3 \\ 4/3 \\ -2/3 \end{bmatrix}
\]

\[
\begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}
\]

\[
\vec{z} = \vec{y} - \hat{\vec{z}} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} - \begin{bmatrix} 8/3 \\ 4/3 \\ -2/3 \end{bmatrix} = \begin{bmatrix} -2/3 \\ 2/3 \\ 2/3 \end{bmatrix}
\]

Distance from \(\vec{y} \) to \(W \) is \(||\vec{z}|| \)

\[
= \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{4}{9}} = \sqrt{\frac{12}{27}} = \sqrt{\frac{4}{9}} = \frac{2}{3}
\]

or \(\frac{2}{\sqrt{3}} \).
Problem 2 continued from previous page. In parts (c) and (d) below, \(W \) and \(\overrightarrow{y} \) are the same as on the previous page.

(c) Suppose \(\overrightarrow{v} \) is a vector in \(\mathbb{R}^3 \) such that the distance between \(\overrightarrow{y} \) and \(\overrightarrow{v} \) is 1. Can \(\overrightarrow{v} \) be in \(W \)? Explain.

Distance between \(\overrightarrow{y} \) and \(W \nabla \overrightarrow{y} \) and \(\overrightarrow{u} \). So \(\| \overrightarrow{y} - \overrightarrow{u} \| = \frac{2}{\sqrt{3}} \) (from (b))

i.e \(\| \overrightarrow{y} - \overrightarrow{u} \| = 1.15 \)

Now \(\| \overrightarrow{y} - \overrightarrow{u} \| = 1 \). Thus \(\| \overrightarrow{y} - \overrightarrow{u} \| > \| \overrightarrow{y} - \overrightarrow{u} \| \). Since \(\overrightarrow{u} \) is the closest point in \(W \) to \(\overrightarrow{y} \), \(\overrightarrow{u} \) cannot be in \(W \).

(d) In your computation in part (b), did you find a vector in \(W^\perp \)? If so, what is that vector?

In part (b), \(\overrightarrow{z} \) is a vector in \(W^\perp \).

Since \(\overrightarrow{z} \cdot \overrightarrow{u} = 0 \), \(\overrightarrow{z} \cdot \overrightarrow{u_2} = 0 \).

3. (6 points) \(H = \{ \text{all polynomials } \overrightarrow{p}(t) \text{ in } \mathbb{P}_2 \text{ such that } \overrightarrow{p}(0) = 0 \} \). Is \(H \) a subspace of \(\mathbb{P}_2 \)? Explain.

A polynomial in \(\mathbb{P}_2 \) is of the form

\[\overrightarrow{p}(t) = a_0 + a_1 t + a_2 t^2. \]

Since \(\overrightarrow{p}(0) = 0 \), \(a_0 + 0 + 0 = 0 \); i.e., \(a_0 = 0 \).

So a polynomial in \(H \) is of the form

\[\overrightarrow{p}(t) = a_1 t + a_2 t^2. \]

Thus \(\overrightarrow{p}(t) \) is a linear combination of \(t \) and \(t^2 \).

So \(H = \text{Span } \{ t, t^2 \} \).

Hence \(H \) is a subspace of \(\mathbb{P}_2 \).
4. (12 points) Define a linear transformation $T : \mathbb{M}_{2 \times 2} \to \mathbb{R}^2$ by

$$T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a+d \\ b+c \end{bmatrix}.$$

(a) Find a set of matrices that spans the kernel (or null space) of T.

$$T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} a \quad d \\ b \quad c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So $a+d=0$, $b+c=0$. Thus, $a=-d$, $b=-c$.

Thus, every matrix in kernel of T is of the form $\begin{bmatrix} -d & 0 \\ c & -d \end{bmatrix}$, which can be written in terms of the basis matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Thus, kernel of $T = \text{Span} \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}$.

(b) The kernel of T is a subspace of $\mathbb{M}_{2 \times 2}$. Use the spanning set you found in part (a) to find a basis for the kernel of T.

$\mathbb{M}_{2 \times 2}$ is isomorphic to \mathbb{R}^4 and under the standard isomorphism, the spanning set in part (a) corresponds to the set $\{ \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \}$ in \mathbb{R}^4.

Thus, the spanning set in part (a) is a basis for the kernel of T.

(c) Is T one-to-one? Explain.

Since there are infinitely many vectors in the kernel of T (as seen in part (a)), T is not 1-1 because more than one vector is mapped to the zero vector under T.

Problem 4 continued from previous page. In part (d) below, the linear transformation T is the same as on the previous page.

(d) Is \[
\begin{bmatrix}
8 \\
-5
\end{bmatrix}
\] in the range of T? If so, find a matrix A such that $T(A) = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$. If not, explain why not.

\[T(A) = \begin{bmatrix} 8 \\ -5 \end{bmatrix} \Rightarrow \begin{bmatrix} a+d \\ b+c \end{bmatrix} = \begin{bmatrix} 8 \\ -5 \end{bmatrix} \text{ where } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

So $a+d = 8$, $a = 2$, $d = 6$, $b = -1$, $c = -4$ satisfy these eqns.

$b+c = -5$ Thus $A = \begin{bmatrix} 2 & -1 \\ -4 & 6 \end{bmatrix}$ is such that $T(A) = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$

So \[
\begin{bmatrix} 8 \\ -5 \end{bmatrix}
\] is in the range of T.

5. (6 points) Let $\overline{p}_1(t) = 2-t$ and $\overline{p}_2(t) = 7t$ be polynomials in P_1.

(a) Verify that $B = \{\overline{p}_1, \overline{p}_2\}$ is a basis for P_1 by showing that the set satisfies the two conditions in the definition of a basis.

P_1 is isomorphic to \mathbb{R}^2 and we will use the isomorphism $a_1 + a_2 t \mapsto \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$. So $\overline{p}_1(t) \mapsto \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\overline{p}_2(t) \mapsto \begin{bmatrix} 7 \\ 0 \end{bmatrix}$.

Check if $\{\begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \end{bmatrix}\}$ is a basis for \mathbb{R}^2:

\[
\begin{bmatrix} 2 & 7 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

Pivot in every column means the set is linearly ind.

Pivot in every row means the set spans \mathbb{R}^2.

Thus the set $\{\begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \end{bmatrix}\}$ is a basis for \mathbb{R}^2.

Hence $B = \{\overline{p}_1, \overline{p}_2\}$ is a basis for P_1.

(b) Find the polynomial \overline{q} such that $[\overline{q}]_B = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$.

So $\overline{q} = 5 \overline{p}_1 + (-1) \overline{p}_2$.

$\overline{q}(t) = 5(2-t) - 1(7t)$
$= 10 - 5t - 7t$
$= 10 - 12t$.
6. (12 points) A 3×3 matrix A has only two eigenvalues, -1 and 5. A basis for the eigenspace corresponding to -1 is \[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\] and a basis for the eigenspace corresponding to 5 is \[
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}
\].

Let \[\vec{x} = \begin{bmatrix}
-2 \\
-2 \\
-2
\end{bmatrix} \]

(a) Find $A\vec{x}$.

\[\vec{x} = \begin{bmatrix}
-2 \\
-2 \\
-2
\end{bmatrix} = -2 \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \]. So \vec{x} is in the eigenspace corresponding to -1 because it is a multiple of the basis vector. Hence \vec{x} is an eigenvector of A with the corresponding eigenvalue -1.

So $A\vec{x} = -1 \cdot \vec{x} = \begin{bmatrix}
2 \\
2 \\
2
\end{bmatrix}$

(b) What is dimension of Nul $A + I$? What is rank of $A + I$? Explain.

\[\dim \text{ Nul} (A + I) = \text{dimension of the eigenspace corresponding to } -1 \]

\[= 1 \]

Number of columns of $A + I = \dim \text{ Nul} (A + I) + \text{rank} (A + I)$

\[3 = 1 + \text{rank} (A + I) \]

So $\text{rank} (A + I) = 2$.
Problem 6 continued from previous page. In parts (c) and (d) below, the matrix \(A\) is the same as on the previous page.

(c) Are the columns of the matrix \(A - 5I\) linearly independent? Explain.

5 is an eigenvalue of \(A\).
So the eqn. \((A - 5I)x = 0\) has infinitely many solns.
Hence the RREF of \(A - 5I\) does not have a pivot in every column because the eqn. \((A - 5I)x = 0\) has free variables.
Hence the columns of \(A - 5I\) are not lin. ind.

(d) Is \(A\) diagonalizable? Explain.

\(A\) has only two eigenvalues, -1 and 5.
Sum of the dimensions of the corresponding eigenspaces = 1 + 1 = 2.
Thus the sum ≠ 3.
Hence \(A\) is not diagonalizable.
7. (10 points) The length of a spring changes when we apply a force to it. Hooke's law tells us that the force \(f \) and the length \(l \) are related by the equation \(l = a + bf \) where \(a \) and \(b \) are constants that depend on the spring. You would like to find these constants for a particular spring. To this end you collect the following experimental data by suspending a weight (which gives the force \(f \) in ounces) from the spring and then measuring the length \(l \) (in inches) of the spring.

<table>
<thead>
<tr>
<th>(f)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l)</td>
<td>8.2</td>
<td>11.6</td>
<td>14.3</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Find \(a \) and \(b \) so that the Hooke's law equation is a least-squares fit to the data. (Start by using the given data to write a system of linear equations to determine \(a \) and \(b \).)

System of eqns: \[
\begin{align*}
& a + 2b = 8.2 \\
& a + 4b = 11.6 \\
& a + 6b = 14.3 \\
& a + 8b = 17.5
\end{align*}
\]

Let \(A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 6 \\ 1 & 8 \end{bmatrix} \), \(\overline{x} = \begin{bmatrix} a \\ b \end{bmatrix} \), \(\overline{l} = \begin{bmatrix} 8.2 \\ 11.6 \\ 14.3 \\ 17.5 \end{bmatrix} \). Then the system can be written as \(A \overline{x} = \overline{l} \).

Normal eqns: \(A^T A \overline{x} = A^T \overline{l} \)

\[
A^T A = \begin{bmatrix} 1 & 2 & 4 & 6 & 8 \\ 2 & 4 & 6 & 8 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 6 \\ 6 & 8 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 14 & 14 & 14 & 14 \\ 14 & 20 & 20 & 20 \\ 20 & 20 & 20 & 20 \\ 20 & 20 & 20 & 20 \end{bmatrix}
\]

\(A^T \overline{l} = \begin{bmatrix} 8.2 \\ 11.6 \\ 14.3 \\ 17.5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 & 6 & 8 \\ 2 & 4 & 6 & 8 & 2 \end{bmatrix} = \begin{bmatrix} 8.2 + 11.6 + 14.3 + 17.5 \\ 2(8.2) + 4(11.6) + 6(14.3) + 8(17.5) \\ 2(8.2) + 4(11.6) + 6(14.3) + 8(17.5) \\ 2(8.2) + 4(11.6) + 6(14.3) + 8(17.5) \end{bmatrix} = \begin{bmatrix} 57.6 \\ 288.6 \end{bmatrix} \)

Augmented matrix for \(A^T A \overline{x} = A^T \overline{l} \) is \[
\begin{bmatrix}
4 & 20 & 51.6 & 0 & 5.25 \\
20 & 120 & 288.6 & 0 & 1.53
\end{bmatrix}
\]

So \(a = 5.25 \), \(b = 1.53 \).