1. Consider the function \(f(x) = \frac{3}{5 - 2x} \).

(a) Is this function continuous on the interval \((-\infty, \infty)\)? Explain.

(b) Compute the average rate of change of \(f \) on \([2, 2.01]\).

(c) Using the limit definition of the derivative, compute \(f'(x) \).

(d) Find the equation of the tangent line to \(f \) at \(x = 2 \).

2. Given that \(f(0) = 2 \), \(g(0) = 3 \), \(f'(0) = 5 \), \(g'(0) = 7 \), and \(f'(3) = \pi \) compute the following.

(a) \(h'(0) \) if \(h(x) = f(x)g(x) \)

(b) \(j'(0) \) if \(j(x) = \frac{f(x)}{g(x)} \)

(c) \(k'(0) \) if \(k(x) = f(g(x)) \)
3. Compute dy/dx for each of the following.

(a) $y = x^5 + 5x + e^5 + \frac{x}{5} + \frac{5}{\sqrt{x}} + \ln(5x) + \arctan(5x) + \ln(5) + \sin 5$

(b) $y = \sqrt[3]{x} \cos(7x^3)$

(c) $y = \frac{e^x + e^\pi}{\tan 4 - 7x}$

(d) $y = \tan(e^{x^2 \arcsin(5x)})$

(e) $y^3 + yx^2 + x^2 = 3y^2$

(f) $y = (x^2 + 1)^{\sin x}$.
4. Given the graph of f, sketch a graph of f' and a graph of F, an antiderivative of f such that $F(0) = -1$.

![Graph of F(x)](image)

![Graph of f'(x)](image)

![Graph of f''(x)](image)

5. Shown below is a graph of f' on its entire domain. The graph is NOT f.

At which x-value(s)

(a) does f have a stationary point?
(b) f decreasing?
(c) does f have a local max?
(d) f' increasing?
(e) does f have a local min?
(f) f' decreasing?
(g) does f' have a stationary point?
(h) f least?
(i) does f' greatest?
(j) is f' least?
(k) does f'' greatest?
(l) is f'' least?

On what interval(s) is

(a) f increasing?
(b) f concave up?
(c) f concave down?
6. Is $y = 7e^{3x}$ a solution to the differential equation $y'' + 2y' - 15y = 0$? Explain.

7. Rewrite $\sin(\arctan(5x))$ as an algebraic expression.

8. Evaluate the following limits.

 (a) $\lim_{x \to \infty} \frac{x^2}{\ln x}$

 (b) $\lim_{x \to 0} \frac{\sin(12x) - 12x}{x^3}$

 (c) $\lim_{x \to 0} \frac{e^x - 1}{\cos x}$

 (d) $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$