Mathematics 205
Final Exam
April 10, 2012

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

You must show all work to receive credit.

No electronic devices other than calculators are permitted.

Give exact answers (such as $\ln 5$ or e^2) unless requested otherwise.
1. Let \(\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \), \(\vec{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} \), and \(\vec{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \).

(a) Are these vectors linearly independent? Explain.

(b) Are these any of vectors orthogonal? Explain.

(c) Let \(W = \text{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \). Find an orthogonal basis for \(W \).
2. Recall the difference between $\sqrt{4}$ and solving $x^2 = 4$. The former is 2 while the latter has the solutions $x = 2$ or $x = -2$. We call that positive root of $x^2 - 4 = 0$ the principal root of 4 and write $\sqrt{4}$. We can extend the definition to matrices. By diagonalizing a matrix and taking the square roots of the eigenvalues, we may compute the square root of a matrix.

(a) Let $A = \begin{bmatrix} 9 & 15 \\ 0 & 4 \end{bmatrix}$. Compute \sqrt{A}.

(b) Write all solutions to $x^2 = A$.

(c) Suppose A was a 3×3 matrix with 3 positive, distinct eigenvalues. How many solutions would there be to $x^2 = A$?
3. We will use the following three statements in the Invertible Matrix Theorem.

- A is an invertible matrix.
- There is an $n \times n$ matrix C such that $CA = I$.
- There is an $n \times n$ matrix D such that $AD = I$.

(a) Show that if AB is invertible then A is invertible. You may not assume that B is invertible to do this problem.

(b) Show that if AB is invertible then B is invertible. You may not assume that A is invertible to do this problem.
4. Let \(\mathcal{K} \) be the set of \(3 \times 3 \) skew-symmetric matrices \((A = -A^T)\) and let \(\mathcal{S} \) be the set of \(3 \times 3 \) symmetric matrices \((A = A^T)\). Let \(T : \mathcal{K} \to \mathcal{S} \) be defined by \(T(A) = A^2 \).

(a) Verify that the square of a skew-symmetric matrix is a symmetric matrix so that the statement “\(T : \mathcal{K} \to \mathcal{S} \)” makes sense. Recall that this is read as “\(T \) is a map from skew-symmetric matrices to symmetric matrices.”

(b) Is \(T \) a linear map?

(c) What does it mean for a map to be onto? Is \(T \) onto? (Hint: think of the dimensions of the spaces involved.)

(d) What does it mean for a map to be one-to-one? Is \(T \) one-to-one?
5. Suppose \(B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -3 & 0 & k \\ 2 & 5 & 6 & 0 \\ 0 & 6 & 4 & 2 \end{bmatrix} \).

(a) If \(k = 1 \), what is \(\det(B) \)?

(b) What value of \(k \) makes \(B \) not invertible?
6. Balance the following chemical reaction using techniques learned in class.

$$\text{PbN}_6 + \text{CrMn}_2\text{O}_8 \rightarrow \text{Pb}_3\text{O}_4 + \text{Cr}_2\text{O}_3 + \text{MnO}_2 + \text{NO}. $$
7. The problem deals with the vector space of \(n \times n \) matrices \(\mathcal{M}_{n \times n} \).

(a) Explain why \(\dim \mathcal{M}_{n \times n} = n^2 \).

(b) Let \(A \in \mathcal{M}_{n \times n} \). Show that there are scalars \(c_0, c_1, c_2, \ldots, c_{n^2} \), not all 0, so that \(c_0 I_n + c_1 A + c_2 A^2 + \ldots + c_{n^2} A^{n^2} = O \). That is, there is a nonzero polynomial \(p \) of degree at most \(n^2 \) so that \(p(A) = O \) (where \(O \) is the \(n \times n \) zero matrix).